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(5) Introduction: 

Although prostate cancer has immense human and financial costs, there is great uncertainty 
about how to best screen for and treat prostate cancer. This project uses data from existing studies 
of prostate cancer to develop a decision model to estimate the costs and benefits of screening and 
treatment for prostate cancer. Using new methods that account for the fact that prostate cancers 
may progress quickly or slowly and that doctors may not be certain of the actual pathologic stage 
of cancer when making treatment decisions, we are developing more accurate estimates of the 
benefits and costs of screening and treatment than have previously been available. In assessing the 
benefits of screening and treatment we consider the effects on both the length and quality of life. 
We are also using our model to look ahead to developing technologies to try to judge which ones 
may offer the biggest benefits to patients to help guide research dollars to the most promising 
advances. 

(6) Body: 

Our progress to date has closely followed the work specified in the Statement of Work 
section of our original proposal. We have been able to accomplish our specific goals with little or 
no delay. In general, our model is comprised of two main features. The first is a model of the 
natural history of prostate cancer. This involves a state vector that allows us to carry states of 
prostate cancer symptoms and stages from year to year and a matrix of transition probabilities that 
describe the progression of prostate cancer in the absence of screening or treatment. The second is 
a decision tree that allows us to model the likelihood that a man has prostate cancer detected in a 
year given the disease state that he carries from the beginning of the year (see Appendix 1). Much 
of our work to date has been devoted to determining the probabilities that are necessary for the 
decision tree and transition between states. One difference from our proposal concerns the time 
period from which the data for our estimates will come. In the original proposal, we had assumed 
that our estimates would reflect the prevalence and treatment of prostate cancer from the late 1980s 
and early 1990s. Since then, a number of new studies and data sources have been released that will 
enable us to derive our estimates from 1990s data. This will make our research more up-to-date 
and more relevant. We will outline our progress in relation to the Statement of Work point by 
point below. 

Task 1. Review of model structure to reflect evolving innovation, Months 1-3. 
a)   Relevance given current knowledge of prostate biology (i.e. grade, p53, early 

metastases) 

Prostate cancer has often been characterized as a slow-growing tumor. However, the 
natural history of prostate cancer varies tremendously based on tumor grade and stage.'   We have 
spent considerable time reviewing literature on the biology of prostate cancer to determine which 
aspects of its biology affect treatment decisions and outcomes. Such information has allowed us to 
determine what states are necessary for us to carry in the state vector from year to year, and the 
probabilities that a person transitions among states. Our comprehensive literature review has 
allowed us to reassess our original hypotheses concerning the natural history of prostate cancer, 
and hence revise some of our models. At the same time, our literature review has helped us clarify 
the strengths and limitations of current knowledge concerning the natural history, diagnosis, and 
treatment of prostate cancer. 

One important development in prostate cancer research has been the identification of p53, a 
tumor suppressor gene that has been found to be mutated in a majority of cancer cell lines. 
However, the frequency of p53 mutation in men with prostate cancer is only about 15%, a much 
lower incidence than its mutation in other cancers.4,5 Preliminary data suggest that the p53 



mutation is associated with prostate cancer progression to hormone refractory state and is more 
frequent in metastatic lesions.6 Although the p53 mutation appears to be associated with more 
advanced prostate cancer, its utilization in daily patients'management is premature at this point and 
further studies are needed to confirm its prognostic value. We therefore have not incorporated 
information concerning p53 mutations as markers for early metastases into our model. However, 
our model is designed to be flexible enough to include new developments concerning p53 into our 
decision analysis if its mutation is likely to be adopted as a prognostic tool. 

On the other hand, the value of stage and grade in determining the outcomes of prostate 
cancer is well documented. Therefore, we have included prostate cancer grade in our state vector 
that we carry from year to year. 

Task 1. Review of model structure to reflect evolving innovation, Months 1-3. 
b) Relevance given current screening and treatment technology (i.e. PSA density, %free 

PSA) 

The most relevant technology for detecting prostate cancer continues to be prostate- 
specific antigen (PSA) testing. In addition to its role in detection, prostate specific antigen is 
increasingly being used to clinically stage prostate cancer tumors. This is because serum PSA level 
has been shown to be of prognostic value for patients with prostate cancer. Thus the outcome of 
any treatment modality has been shown to worsen as the clinical stage, PSA, and Gleason grade 
increase. Although the AJCC staging system for prostate cancer does not take serum PSA into 
consideration and the grade is only partially integrated into the staging system, many recent 
publications group their patient populations into 3 prognostic groups (favorable, intermediate, and 
unfavorable) according to all the important prognostic factors, including PSA, Gleason, and clinical 
stage. The favorable group includes patients with Tl-2, PSA< 10, and Gleason< 7. The 
intermediate group includes patients with only one prognostic factor of a higher value than stated 
for the favorable group (either PSA> 10, or Gleason> 6, or clinical stage> T2). The unfavorable 
group includes patients with 2 or more poor prognostic values. Given the diagnostic and prognostic 
value of PSA tests, we have incorporated PSA level detectability as a state in the state vector of the 
model so that this may be studied in detail. 

Considering specific types of PSA tests, it remains to be seen whether PSA density will 
offer a clinical benefit compared to standard PSA tests.8 Likewise, the data is still too limited to 
determine whether free PSA is clinically useful.9'1011 As such, we have not formally incorporated 
such measurement techniques into the model, but have programmed our model to permit their 
inclusion later if new research determines that they have diagnostic or prognostic value. 

Task 1. Review of model structure to reflect evolving innovation, Months 1-3. 
c) Relevance for potential future technologies (i.e. PCR, Indium-Ill labeled antibody to 

detect metastases, gene therapy) 

We have not found that any of the new therapies listed above (PCR, Indium-111 labeled 
antibody to detect metastases, gene therapy) have come into widespread use as diagnostic or 
treatment tools for men with prostate cancer. However, we have designed our model to be flexible 
so that we can allow for the effects of new diagnostic and therapies on prostate cancer detection, 
treatment, and outcomes. Thus, if any of these new technologies develop to the point that they are 
introduced into standard practice, we have ensured that we can easily incorporate their effects on 
prostate cancer detection, treatment, and cost-effectiveness practices into our model. In addition, 
we have done a substantial amount of theoretical work developing a theoretical framework with 
which to assess the potential value of information about these technologies, as we discuss below. 



Task 2. Programming of model to reflect revised structure, Months 1-6 
a)   Revision of decision tree if needed 

We have made substantial improvements in our decision tree compared to the one that we 
submitted for review in the original proposal. Our changes have mostly been designed to allow us 
to make our model more accurate, but have also allowed us to simplify the model in some places to 
improve our computational efficiency. For example, in the original grant, we submitted a decision 
tree with multiple branches tracing the likelihood that a person would have symptoms associated 
with prostate cancer, receive diagnostic tests, receive specific treatments for prostate cancer, and 
have specific complications or outcomes due to their treatments. The decision tree was completely 
symmetric for ease of interpretation. However, because there were near zero probabilities 
associated with a significant number of branches of the decision tree, this was very inefficient 
computationally. For example, it is virtually impossible that someone would receive a transurethral 
resection of the prostate (TURP) given that they do not have benign prostatic hyperplasia (BPH) 
and its associated symptoms. We therefore eliminated TURP as a possible mode of discovering 
prostate cancer among asymptomatic men. While this reduced the symmetry of our model, it also 
greatly reduced the number of possible branches in the decision tree. This helps with programming 
and presentation of the model. Appendix 1 depicts the revised decision tree. 

Task 2. Programming of model to reflect revised structure, Months 1-6 
h)   Revision of natural history model if needed 

As mentioned above, we have rethought some of our assumptions concerning the natural 
history of prostate cancer. In the original model, for example, we assumed that a given percentage 
of men would have BPH symptoms each year. We modeled the probability that men would have 
symptoms as independent of whether they had symptoms the previous year. However, this 
approach would have overestimated the cumulative number of men who have had BPH over time 
because men who do not have BPH in one year are less likely to have it the next year. Hence, the 
probability of developing BPH and associated symptoms should be conditional on whether or not 
symptoms were present in the previous year. To address this, we have created a large vector with 
740 states that we carry from year to year. The states that are included in this vector include 
combinations of BPH symptoms (two states), cancer symptoms (two states), rectal and PSA 
detectability (6 states), having had a TURP (2 states), true stage (5 states), and true grade (3 states). 
We assume that the probability of moving into each of the states is conditional on which state the 
person was in the previous year. One point to clarify is that rectal and PSA detectability states 
indicate whether a person would have detectable prostate cancer if they had each test. It does not 
indicate whether or not a person actually has had a PSA or digital rectal exam test. Also, we carry 
the true stage and grade through the model as opposed to the clinical stage and grade that might be 
diagnosed after a biopsy, digital rectal exam (DRE), or prostate-specific antigen (PSA) test. At 
clinical staging nodes of the model, there is a certain likelihood that the true (pathologic) grade and 
stage will be misclassified as a different clinical grade and stage.   The true grades and stage of 
prostate cancer are only often determined after radical prostatectomies in which the entire prostate 
is removed and examined. 

Task 2. Programming of model to reflect revised structure, Months 1-6 
c) Programming of costs 
d) Programming of benefits and quality of life adjustments 

We have chosen to discuss the programming of costs along with the programming of 
benefit and quality of life adjustments together since both sections affect our model in similar 
ways.   To date, we have not changed the basic method of incorporating costs, benefits, and quality 



of life assumptions into our program. As a result, we have not needed to do much reprogramming 
of the basic cost equations in our model. 

Most of the complex programming to incorporate costs into our model will come when we 
complete programming sensitivity analyses over the next six months. At that point, we will need to 
determine how varying our assumptions about treatment patterns and screening test sensitivity 
alters the cost effectiveness of tests and treatments, with techniques described in task 4 below. 

Task 3. Review of literature to estimate model parameters, Months 4-18 
a) Identification of parameters of interest 

In revising our decision tree model, we have identified the parameters of importance. 
Appendix 1 shows the decision tree. Each node of the decision tree represents at least one 
probability parameter that needs to be estimated. 

Task 3. Review of literature to estimate model parameters, Months 4-18 
b) Collection of articles relevant for parameters of interest 
c) Review and analysis of articles 
d) Preparation of documentation of literature review 

We have been working on parts a, b, and c of task 3 simultaneously. For each parameter of 
interest, we have completed a comprehensive literature review to obtain desired parameter 
estimates. Where the parameter estimates are not readily available from the literature review, we 
have conducted our own data analyses. We have been formatting the analyses for presentation in a 
comprehensive document describing how we have derived our estimates. Appendix 2 provides an 
example of how we are documenting the methods used to derive each parameter estimate. Below 
are brief summaries of several of the key parameters used in the model and our progress in 
estimating them. Some of these parameters are used in single nodes in the decision tree. Others 
are used at several nodes in the tree. 

Parameter: Prevalence of prostate cancer across stages 
To derive the prevalence of prostate cancer across stages, we reviewed the existing 

literature that addresses the issue of prostate cancer prevalence by pathological examination of the 
prostate glands of men who either died of causes other than prostate cancer (autopsy series) or of 
men who had their prostate glands surgically removed for disease other the prostate cancer (pelvic 
exenteration, cystoprostatectomy). It is well documented that meticulous pathological examination 
of the prostate gland (5-mm slices, whole mount sections) is superior to routine random pathologic 
evaluation (prostate cancer prevalence almost doubles when whole mount sections examination is 
done in comparison to simple random examination). We used exclusively studies that utilized 
whole mount sections of the prostate gland. All studies indicate an increase in the pathological 
prevalence of prostate cancer with age.12,13,14,ls*I6lt7'18'19,20 We have also tried to find similar studies 
to determine the likelihood that the stage distribution worsens with increasing age, but found very 
little evidence at all.21 Therefore, we will have to develop our natural history model largely in the 
absence of such data. 

Parameter: Prevalence of prostate cancer across grades 
To derive the prevalence of prostate cancer across grades we relied on studies that use the 

Gleason grading system to report the grade of prostate cancer. In the Gleason grading system the 
primary (the most dominant) and secondary pattern (the second most dominant pattern) are given a 
grade from 1 to 5. Gleason score is the sum of both digits, which range from 2 to 10. In our model, 
tumors with Gleason Score of 2 to 4 are considered well differentiated, 5 to 7 moderately 
differentiated, and 8 to 10 poorly differentiated. In our model we used the prevalence of the true 



grade of prostate cancer seen in the final radical prostatectomy specimen. Since there might be a 
discrepancy in Gleason Score between prostate biopsy grade and ultimate prostatectomy grade 
given that biopsy sample just a small portion of the prostate, we based our estimates on grade noted 
in studies of radical prostatectomies.22 

One problem with the Gleason score is that it may be an imprecise method of grading 
tumors since it is based on the overall composition of different grades in a tumor, not just the worst 
grade. Hence, an individual with a tumor composed of both moderately and poorly differentiated 
prostate cancer would receive a different Gleason score than an individual who only had poorly 
differentiated grades of prostate cancer, even though the fact that both had poorly differentiated 
tumors that might cause them to have similar outcomes regardless of the presence of better 
differentiated grade within the tumor. However, given that the Gleason score is so widely used in 
the literature, we have decided to use Gleason scoring as the way that we classify well, moderately, 
and poorly differentiated tumors. 

Parameter: Prevalence of benign prostatic hvperplasia (BPH) and cancer symptoms 
We wish to estimate here the probability that BPH or cancer symptoms would prompt a 

man to have a digital rectal exam or PSA test. For BPH symptoms, we performed a meta-analysis 
of epidemiological data to define the prevalence of symptomatic BPH. Deriving the probability 
that someone had cancer symptoms was not quite so straightforward since not everyone with 
cancer has symptoms. Therefore, we used a series of equations at differing ages that relate the 
underlying probability that someone has symptoms given that they have prostate cancer to the 
conditional odds ratio of having cancer given that symptoms occur. The specific methods are 
detailed in Appendix 2. Solving these equations gave us the necessary probabilities for the 
likelihood of having symptoms given that a man has cancer. 

Parameter: Rectal and PSA sensitivity and specificity 
We used a number of articles to determine sensitivity and specificity of PSA and rectal 

examination.23'24'25'26'27-28-29'30-31'32'33'34 

Some of these studies are classic screening studies that use multiple modalities of 
screening to determine sensitivity and specificity. Others (e.g. Chodak et al.) are population-based 
cohort studies. From these, we can determine the likelihood that someone who has a positive PSA 
test or digital rectal exam has prostate cancer. We can combine the population prevalence of 
prostate cancer with the likelihood that someone has prostate cancer given that they have a positive 
DRE or PSA test to determine the sensitivity and specificity of these tests. 

Parameter: Sensitivity/specificity of biopsy tests 
We assume that all men who have positive DRE or PSA tests have a biopsy to determine if 

they have prostate cancer. The grade of prostate cancer may be misclassified by the biopsy. For 
example, since a single tumor may consist of multiple grades, the final grade diagnosis may be 
contingent on which part of the tumor is sampled. 

In order to determine the sensitivity and specificity of biopsies, both overall and by grade, we 
constructed a meta-analysis of the reported literature to determine the sensitivity and specificity of 
prostate gland biopsy in detecting the true grade. Based on criteria defined by Bailar and 
Mosteller,35 in addition to identifying all relevant studies that have been reported in the literature 
.. '    . , —„T „^ i_        j    v  *• c 1   4-  A    -*■   i„„22,36,37,38,39,40,41,42,43,44, ,45,46,47,48N (by conducting a MEDLINE search and citations from related articles ), 
the criteria to include studies in the our meta-analysis were the following: 
1) Original data must be presented. Studies that included or overlapped with previously published 

data, and review papers were carefully evaluated but were not in the meta-analysis. 
2) The studies must quantify grade on a common scale. Grading should be reported in three tier 

system (well-differentiated, moderately differentiated, and poorly differentiated), using the 
Gleason score. 



3) The data must be reported in enough detail to allow full analysis and replication. The actual 
number of patients with their biopsy and true grade (rather than just percentage) must be 
reported. 

4) The pathologist(s) should be unaware of the true grade when reviewing the biopsy grade. 
5) The type of biopsy should be specified and involve multiple cores or ultrasound guidance (XX) 
6) The pathologic examination of the radical prostatectomy specimen performed to compare 

biopsy results with true grade and stage must be thorough. The ideal method of evaluating the 
resected prostate gland is to perform a whole mount sections with thin (5 mm) slices. 

7) There should be no patient selection bias, i.e., a randomly selected population with masking of 
the investigators to variables being investigated, or consecutive patients that were seen within a 
specific period of time. 

8) There should be a comprehensive staging work up of the patients. This includes detailed 
history and physical examination, DRE, blood tests (Alkaline phosphatase, PSA, acid 
phosphotase), bone scan, CT-scan. 

9) There should be no hormonal blockade prior to prostatectomy. 
The first 3 criteria are considered essential for a study to be included in the meta-analysis. 

Criteria 4 to 9 were considered important and but we accepted studies that did not meet some of 
these criteria. Almost all of the studies are single institution retrospective reviews that compare the 
grade in biopsy with that of radical prostatectomy specimens. Few studies compared consecutive 
patients within a specified period of time. We excluded one study49 because it included only 
patients whose biopsy revealed moderately differentiated tumors. 

The probabilities resulting from this meta-analysis are ready to be incorporated into the 
model. A formal presentation of the results will be completed shortly. 

Parameter: Probability of having a transurethral resection of the prostate OTJRP) 
Prostate cancer may be detected after examination of the removed prostate sample once a 

person has a TURP to relieve symptoms caused by BPH. Therefore, it is important to know the 
rate at which TURPs are performed. We are currently undertaking a literature review to determine 
the likelihood that someone with BPH related symptoms has a TURP. If we cannot obtain reliable 
estimates from the literature, we will use maximum likelihood estimation to derive them by using 
our model and national data on TURP rates by age. 

Parameter: Probability of detection via TURP by stage 
In order to capture all men who have prostate cancer detected, it is important to know the 

likelihood that prostate cancer is detected following a TURP. A review of the literature found that 
among men with no clinical evidence of prostate cancer who undergo TURP for urinary obstructive 

^  . •    r        j-utncoz 50,51,52,53,54,55 symptoms, prostate cancer is found in about 17.5%. 
To determine the sensitivity of TURP in prostate cancer diagnosis, prostate cancer 

prevalence from our compiled prevalence data was utilized. The expected prevalence of occult 
prostate cancer in men of age 70 and older is about 40-70%. Given that TURP detect cancer in 
about 17.5%, its sensitivity is about 33%.   As such, TURP has a sensitivity of 33% in detecting 
occult prostate cancer and about 17.5% of patients who undergo TURP will have cancer found in 
the resected tissue. 

Parameter: Metastatic work-up positive 
Part of the staging of prostate cancer includes determining if metastases have spread to 

distant parts of the body. We are currently reviewing the literature to determine the proportion of 
men with different stages of prostate cancer who have metastases as evidenced by staging 
examinations or progression following prostatectomy. If we cannot adequately determine this 
parameter from the literature, we can use maximum likelihood estimation to estimate it based on 
the model. 

10 



Parameter: Treatment 
Knowing the treatments given stage of prostate cancer is important to understanding 

processes of care and outcomes among those with prostate cancer. We have conducted a study 
using thel995 Surveillance, Epidemiology, and End Results (SEER) data from the National Cancer 
Institute to determine standards of care given the clinical stage of prostate cancer. In the past, 
many studies had published rates of prostate cancer treatment based on a combination of true stage 
and clinical stage. Since physicians base treatment decisions on the clinical stage of prostate 
cancer -indeed, the true stage is only known after treatment with a prostatectomy - we felt it was 
important to conduct our own study to determine treatment rates based on clinical stage. 

A copy of a paper detailing our study that is currently under review has been added in 
Appendix 3. The general findings of our study indicate that treatment rates by most accurate stage 
differ substantially from rates by clinical stage. For example, surgery rates for stages B, C, and D 
are 33%, 68%, and 7% based on most accurate stage but 24%, 8%, and 1% based on clinical stage. 
Treatment rates by clinical stage vary dramatically by age. Over 60% of men age 50-54 with 
clinical stage A and B choose surgery versus 20% of men age 70-74, and 1% after age 80. 
Radiation rates for clinical stage A and B rise with age up to age 70-74, before declining in older 
patients. About half of men with clinical stage C up to age 80 choose radiation, but almost 40% of 
men age 50-54 choose surgery. 

Our study includes only treatments of watchful waiting, radiation, and radical 
prostatectomy. Our model and sensitivity analyses are equipped to allow us to include any other 
treatments that we later determine have either widespread use or potentially significant effects on 
outcomes. 

Parameter: Complication rates given treatments 
The complications resulting from treatments for prostate cancer can have a major impact 

on quality of life and hence the cost-effectiveness of particular treatments. In order to determine 
the rate of complications associated with prostate cancer treatments, a Medline search was carried 
out to identify prospective and retrospective studies that address the complication rates. We 
identified the main quality of life issues in men treated for localized prostate cancer to be urinary 
continence, urethral stricture, sexual potency, and bowel function. There is a general agreement in 
the literature that radical prostatectomy is associated with higher rates of treatment-induced urinary 
incontinence and impotence than radiotherapy, while radiotherapy results in more bowel 
dysfunction. Nonetheless, the majority of treated patients are satisfied with their choice of therapy 
and they would choose the same treatment again.56,57,58 However, the satisfaction rates appear to 
decline over time in patients who do develop treatment complications.59 

Major sources of information came from the Prostate Outcome Research Team report to 
the Office of Technology Assessment of the U. S. Congress in 1995,60 and other related studies. 
61,62,63,64 ^ the en(^ ouf ^QSt estjmates 0f me complication rates were: 

Radical External Beam 
Prostatectomv Radiation Therapv 

Treatment associated mortality 1.1% 0.2% 
Incontinence 33.4% 7.3% 
Bowel injury 4.0% 13.7% 
Urethral stricture requiring long-term treatment 12.4% 4.5% 
Impotence 85.0% 40.0% 

One consideration worthy of discussion is that the introduction of nerve-sparing radical 
prostatectomy has changed the rate of impotence after surgery for prostate cancer. While the 
impotence rate after non-nerve sparing radical prostatectomy is almost 90-100%, the rate is lower 
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with nerve sparing radical prostatectomy, especially in younger patients. We will use the 
sensitivity analyses of our study to determine how increased use of nerve sparing radical 
prostatectomy will affect complication rates. 

Parameter: Cure rates and long-term mortality following treatment 
Eliminating prostate cancer is an important goal of many treatments. Our model assumes 

that radical prostatectomies among those with stage A or stage B cancers is curative. We also 
assume that stage C or D prostate cancer cannot be cured. We are currently conducting literature 
reviews to determine the long-term mortality associated with radiation treatment for prostate 
cancer. 

Parameter: Transition rates across states 
Knowing how men transition across states in our state vector is an important component of 

our research. For example, many men with stage B cancer will progress to stage C or stage D 
cancer if they are not treated. These transitions will occur at the end of the decision tree model for 
those men who are not found to have prostate cancer, or have non-terminal prostate cancer. Once a 
man is actually found to have terminal prostate cancer, he no longer cycles through the program. 
Only men at risk of developing worsened prostate cancer cycle from year to year. As described in 
our initial proposal, these will be estimated over the next year using maximum likelihood 
techniques. 

Task 4: Sensitivity Analysis: Months 6-18 
a) All parameters in model 
b) One and multi-way sensitivity analysis 

We currently are programming the sensitivity analyses for the model. Most of the high and 
low estimates of parameters have already been estimated as described in the parameter derivations 
above. 

Task 4: Sensitivity Analysis: Months 6-18 
c) Assess effects on: 

1) Costs 
2) Effectiveness 
3) Cost-effectiveness 

We have done a great deal of time investigating the theoretical basis of cost-effectiveness 
analysis.65'66'67'68'®'70'71'72'73'74'75'76'77,78,79,80'81 Dr. Meltzer has recently written a manuscript entitled, 
"Addressing Uncertainty in Cost-Effectiveness Analysis: Implications of Expected Utility 
Maximization for Methods to Perform Sensitivity Analysis and the Use of Cost-Effectiveness 
Analysis to Set Priorities for Medical Research." A copy of the paper has been included in 
Appendix 4. This paper examines the purposes for which sensitivity analysis is performed in 
medical cost-effectiveness analysis and the implications of an expected utility maximization model 
for the methods to perform such analyses. When sensitivity analysis is done to help guide decision 
making in the presence of uncertainty, expected utility maximization implies that the optimal 
decision is described by the ratio of the mean cost divided by the mean benefit. When sensitivity 
analysis is done to make decisions for subgroups with identifiable differences in costs or benefits, 
the standard is the same, only using the appropriate mean costs and mean benefits for each group. 
When sensitivity analysis is done to set priorities for the collection of additional information, the 
expected utility maximization framework suggests that value of information calculations can be 
done in the same context to assess the value of research. We will use such formulations in our own 
prostate cancer model. 
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In addition, we have been doing a great deal of research on determining patient utilities for 
different states with prostate cancer and treatment complications for the cost-effectiveness analysis. 
In general, utility assessment is a formal measurement of patients' preferences for their health 
states. It reflects the strength of the preference or the degree of abhorrence for the potential 
outcome of interest. Utilities are usually expressed numerically from 1.0 (utility for perfect health) 
to 0.0 (utility for death). The most common method of utility assessment is the time trade-off 
method. In time trade-off, patients are asked to estimate the survival time they are willing to 
sacrifice in order to retain perfect health. In our model, as in other Markov analyses, utility values 
are associated with each state of health. Studies that address utility in prostate cancer patients were 
identified by Medline search. We have currently reviewed numerous studies that use time-trade off 
si *•      t    (T/       82,83,84,85,86,87,88 questions to assess patient utilities. 

(7) Key Research Accomplishments 

• Created more accurate model concerning the natural history of prostate cancer and a more 
accurate decision tree concerning the treatment of prostate cancer. 

• Identified relevant natural history, treatment, and outcome parameters for inclusion in our 
natural history and decision tree models. 

• Determined the model parameter probabilities using literature reviews, meta-analyses, and 
primary data analysis. 

• Submitted to a peer-reviewed journal a paper describing prostate cancer treatment rates across 
clinical stages. 

• Submitted to a peer-reviewed journal a paper describing the theoretical basis for addressing 
uncertainty in cost-effectiveness analysis 

(8) Reportable Outcomes 

Articles: 

*Meltzer D, Egleston BL, Abdalla I. Patterns of Prostate Cancer Treatment by Clinical Stage and 
Age in the United States. Under review, 1999. 

*Meltzer D. Addressing Uncertainty in Cost-Effectiveness Analysis: Implications of Expected 
Utility Maximization for Methods to Perform Sensitivity Analysis and the Use of Cost- 
Effectiveness Analysis to Set Priorities for Medical Research. Under review, 1999. 

*Meltzer D, Johannesson M. Inconsistencies in the 'Societal Perspective' on Costs of the Panel on 
Cost-Effectiveness in Health and Medicine. In press, Medical Decision Making. 

*Meltzer D, Johannesson M. On the Role of Theory in Cost-Effectiveness Analysis: A Response 
To Garber, Russell, and Weinstein. In press, Medical Decision Making. 

Published Abstracts 

*Meltzer D, Hazen G, Johanesson M, Abdalla I, Chang R, Elstein A, Schwartz A. Effect of Future 
Costs on the Cost-Effectiveness of Life Extension and Quality of Life Improvement Among 
the Elderly. Medical Decision Making.18: 475, October 1998. 

*Meltzer D, Polonsky T. Do Quality-Adjusted Life Years Reflect Patient Preferences? Validation 
Using Revealed Preference for Intensive Treatment of Insulin-Dependent Diabetes Mellitus. 

13 



Medical Decision Making 18: 459, October 1998. 
Presentations: 

"Implications of Expected Utility Maximization for Assessing Cost-Effectiveness under 
Uncertainty: Methods for Sensitivity Analysis and Implications for the Use of Cost- 
Effectiveness Analysis to Set Priorities for Medical Research". National Bureau of Economic 
Research Summer Institute, Boston, MA, July 1998. 

"Effect of Future Costs on the Cost-Effectiveness of Life Extension and Quality of Life 
Improvement Among the Elderly", Society for Medical Decision Making Annual Meeting, 
Plenary Address, Boston, MA, October 1998. 

"Accounting for Future Costs from a Societal Perspective in Cost-Effectiveness Analysis": Plenary 
Address, International Health Economics Association Annual Meeting, Rotterdam, Netherlands, 
June 1999. 

"Measuring the Burden of Illness". Invited Presentation to Dr. Harold Varmus and panel of experts 
convened at NIH in Response to IOM Report on Scientific Priorities at NIH, June 1999. 

(9) Conclusions 

We have made substantial progress in refining our models and comprehensively reviewing 
the relevant literature concerning the natural history of prostate cancer, its treatment, and the 
associated outcomes. We have made substantial progress towards determining the following 
parameters of our model and are completing formal documentation of these findings: 

■ The prevalence of prostate cancer in men over the age of 50 by stage and age. 
■ The prevalence of benign prostatic hyperplasia and prostate cancer related symptoms. 
■ The likelihood that a man has prostate cancer that may be detected by a prostate 

screening antigen (PSA) test or by a digital rectal exam (DRE). 
■ The likelihood that a biopsy after a positive DRE or PSA test will correctly or 

incorrectly classify the stage and grade of prostate cancer. 
■ The likelihood that prostate cancer will be found after a transurethral resection of the 

prostate (TURP). 
■ How prostate cancer is treated across stage and age. 
■ The likelihood that a man will have a complication after a given treatment. 
■ The utility associated with living in specific health states after developing, 

complications due to curative or palliative treatment for prostate cancer. 
We have also furthered the field of cost-effectiveness research by developing sound theoretical 
models on the most efficient and appropriate method for conducting sensitivity analyses. 

So what do our findings mean for the future of the field? 
■ Prostate cancer screening and treatment remain controversial because existing research 

has not yet provided a convincing, comprehensive assessment of the value of 
intervention for prostate cancer. Our research is highly innovative in that we are 
building on past research to build a comprehensive model that will detail the natural 
history of prostate cancer, and the most cost-effective screening policies and 
treatments. Our model will be flexible enough to allow for the evaluation of any new 
therapies or screening tests that are developed in the near future. 

■ Our manuscript detailing how prostate cancer is treated across clinical stage and age is 
the first to report national statistics on treatment decisions in a clinically relevant way. 
In the past authors had often used the "best information" available from a combination 
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of pathologic and clinical stage to detail how prostate cancer is treated according to 
stage. This gave a biased view of the way that physicians treated cancer upon 
presentation. Our paper allows health professionals and patients to see how prostate 
cancer is actually treated. This can assist patient and physician decision-making. Our 
findings also provide relevant information concerning standard practice patterns to 
researchers and policymakers who are researching and debating appropriate treatment 
for various stages of prostate cancer. 

■    Our manuscript developing theoretical underpinnings of cost-effectiveness research 
provides relevant methods for cost-effectiveness research on almost any subject. If the 
practices detailed by the paper are widely adopted, inconsistencies in current cost- 
effectiveness analyses will be reduced. This could make cost-effectiveness analyses 
more comparable across studies. 

Our research is by no means complete. However, we are well on our way to finishing the 
project on time. So far, we have been able to complete on time all the tasks we detailed on our 
proposal. We continue to expect our analysis to make a substantial contribution to prostate cancer 
research. 
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(11) Appendices 

Appendix 1. Decision Tree Model. 

Appendix 2. Cancer symptoms documentation. This provides an example of the documentation 
being generated for all parameters in the model. 

Appendix 3. Meltzer D, Egleston BL, Abdalla I. Patterns of Prostate Cancer Treatment by 
Clinical Stage and Age in the United States. Under review, 1999. 

Appendix 4. Meltzer D. Addressing Uncertainty in Cost-Effectiveness Analysis: Implications of 
Expected Utility Maximization for Methods to Perform Sensitivity Analysis and 
the Use of Cost-Effectiveness Analysis to Set Priorities for Medical Research. 
Under review, 1999. 
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Appendix 2 

Parameter Name:        Probability of symptoms given cancer 
Description: This section describes the probability that someone will have symptoms similar 

to BPH given that they have prostate cancer. 
Derivation Technique: We determined from the literature the odds ratio of having cancer given 

symptoms, the prevalence of cancer, and the prevalence of BPH. We used this to 
mathematically solve for the probability of having symptoms given cancer. 

Introduction: 
This section describes the probability that someone has symptoms given prostate cancer. It is important to 
know this information so that we can determine the proportion of men who have symptoms that lead them to 
get exams. The condition of having symptomatic prostate cancer is a state that is carried from year to year 
so that we do not overestimate the prevalence of symptomatic prostate cancer in the population. In this 
study, we assume that tumors only cause symptoms if they are large enough. 

Derivation: 
The estimates are obtained by using published information concerning the odds ratio of having cancer given 
symptoms and the prevalence of large tumor prostate cancer and BPH in the population. This information is 
used in the following way: 

Let C represent having prostate cancer, S represent having symptoms, B represent having BPH, and Px 

represent the probability of having a condition where x is replaced by B(BPH), C (cancer), CB (prostate 
cancer and BPH), S (symptoms), -S (no symptoms). 

nAA D ♦•   f   r        ^     P(CIS) P(CIS)/P(S)     _        P(SIC)P(C)/P(S) P(SIC)/P(S) 
Odds Ratio for Cancer(OR) - ^^ - p(QS) / (j _ p(s)) - (J _ p(S|C))|p(Q , (1. p(S))    (1 _ p(S|C)), (1. p(S)) 

Rearranging this: 

'l-P(S)' 
(l-P(SIC))*OR = P(SIC)* 

OR = P(SIC)* 

P(SIC) =   

OR + 

OR 
v 

P(S) 

l-P(S) 
P(S) 

OR  ■' l-F(S) 

OR = 

P(S) 

P(CIS) P(CS)/P(S)     _ (PCB + P(SIC)PC) / (PCB + PB + P(SIC)PC) 
P(CI-S)    P(C - S) / (1 - P(S)    (1 - P(SIC))PC / [(1 - P(SIC))PC + (1 - Pc - PB - PCB)] 

(Pc - P(SIC)PC)(PCB + PB + P(SIC)Pc)OR = (PCB + P(SIC)PC)[PC + (P(SIC)PC + (1 -Pc -PB - PCB)] 

LetX = P(SIC)Pc, then 

(Pc - X)(PCB + PB + X)OR = (PCB + X)[PC + X + (1 -Pc - PB - PCB)] 

[-X2 + (Pc - PCB - PB )X + (PCPCB + PCPB)]OR = X2 + [Pc + (1 - Pc - PB - PCB) + PCB]X + 

PcB^C + ^CB (1 - Pc — ^B - *CB )] 



Let a = (1-OR), 

b= [Pc+(1-Pc 

c = PCBPC+PCB(1-PC-PB-PCB)-PCPCBOR-PCPBOR 

PB -PCB) + PCB "OR(Pc) + OR(PCB) + OR(PB)] 

X = 
-b + Vb2-4ac 

2a 
Solve for P(SIC): P(SIC) = X/PC 

The parameters for these equations are calculated as follows: 

1) Odds Ratio of cancer given symptoms: 
Lower bound: 1.0 
Low estimate: 1.5 
Best estimate: 2.0 
High estimate: 2.5 
Upper bound: none 

--Source: Adolfsson J, Helgason AR, Dickman P, Steineck G. Urinary and bowel symptoms in men with 
and without prostate cancer: Results from an observational study in the Stockholm area. European Urology 
1998;22:11-16. 

2) Calculations of PR Pr, P«r 

First, we determined the prevalence of BPH from the literature: 

Table 1: Prevalence of BPH in US: 
Best Estimate: 
Age Incidence Prevalence (drawn from 

incidence rates) 
40-49 0.0094 0.1224 
50-59 0.0313 0.3020 
60-69 0.0513 0.5518 
70-79 0.0591 0.7481 
80+ 0.0591 0.8630 
—Source: Glvnn et al.. The development of benign pro static hyperplasia among vo unteers in the normative 
aging study. American Journal of Epidemiology 1985, 121(l):78-90 

Next, we determined the prevalence of prostate cancer from the literature: 

Table 2: Prevalence of Prostate Cancer in US, any stage: 
Age Prevalence 
40-49 0.266667 
50-59 0.247911 
60-69 0.322751 
70-79 0.395238 
80+ 0.469512 
-Source: Meta-analysis of: 
-Baron E, Angrist A. Incidence of occult adenocarcinoma of the prostate. Archives of Pathology 1941; 
32:787-793. 



--Edwards CN, Steinthorsson E, Nicholson D. An autopsy study of latent prostate cancer. Cancer 1953; 
6:531-554. 
—Franks LM. Latent carcinoma of the prostate. Journal of Pathology and Bacteriology 1954; 68:603-616. 
-Halpert B, Schmalhorst WR. Carcinoma of the prostate in patients 70 to 79 years old. Cancer 1966; 
19:695-698. 
-ScottR, Mutchnik DL, Laskowski TZ, Schmalhorst WR. Carcinoma of the prostate in elderly men: 
Incidence, growth, characteristics, and clinical significance. Journal of Urology 1969:101:602-607. 
-Lundberg S, Berge T. Prostatic carcinoma: An autopsy study. Scandinavian Journal of Urology and 
Nephrology 1970; 4:93-97. 
-Sakr WA, Haas GP, Cassin BF, Pontes JE, Crissman JD. The frequency of carcinoma and intraepithelial 
neoplasia of the prostate in young male patients. Journal of Urology 1993; 150:379-385. 
-Guileyardo JM, Johnson WD, Welsh RA, Akazaki K, Correa P. Prevalence of latent prostate carcinoma in 
two U.S. populations. Journal of the National Cancer Institute 1980; 65:311-316. 

Finally, we determined the proportion of prostate cancer that is large enough to actually cause symptoms. 

Table 3: Proportion of prostate cancer tumors large enough to cause symptoms (>0.46 ml); weighted by race 
Age Black Men * 

(12.7% of pop) 
White Men* 
(87.3% of pop) 

Calculation of proportion: Proportion 

40-49 5/14 8/26 =0.127*5/14+( 1-0.127)*8/26 0.313973 

50-59 5/14 8/26 =0.127*5/14+(l-0.127)*8/26 0.313973 

60-69 5/14 8/26 =0.127*5/14+(l-0.127)*8/26 0.313973 
70-79 9/17 14/35 =0.127*9/17+( 1-0.127)* 14/35 0.416435 
80+ 9/17 14/35 =0.127*9/17+(l-0.127)*14/35 0.416435 
*Ponulation data con les from the US Bi ireau of the Census Population Division, release PPL-91 [, "United 
States Population Estimates, by Age, Sex, Race, and Hispanic Origin, 1990 to 1997." On July 1, 1994, the 
estimated number of black men in the US totaled 15,491,000 (12.7% of the black/white total). The 
estimated number of white men in the US totaled 106,246,000 (87.3% of the black/white total). 
-Source of tumor size proportion data: McNeal JE, Bostwick DG, Kindrachuk RA, Redwine EA, Freiha FS, 
Stamey TA. Patterns of progression in prostate cancer. Lancet 1986; 60-63. 

3) Calculations of P(SIC ): 

We used the information on the prevalence of BPH, prostate cancer, and large tumors to calculate the 
parameters PCB, PB, and Pc as follows: 

Table 4: Calculating PCB PB, F 'c 
Age Prevalence of BPH 

in the US (Table 1) 

Prevalence of large 
prostate tumors in US 
(Table 2 * Table 3) 

PcB 
(Column 1* 

Column2) 

PB 

(column 1-column 3) 

Pc 
(Column 2-Column 3) 

40-49 0.1224 0.083726007 0.010251 0.11218 0.073475 
50-59 0.3020 0.0778372 0.023504 0.27846 0.054333 
60-69 0.5518 0.101335049 0.055921 0.49592 0.045414 

70-79 0.7481 0.164591092 0.123123 0.62493 0.041468 

80+ 0.8630 0.195521449 0.168731 0.69425 0.026790 

Table 5 breaks out the calculations for the quadratic equation where a, b, and c are the variables for the 
quadratic equation, whose derivation is outlined above, and X+ is the X that is calculated from the equation 



X: 
-b + Vb2-4ac 

2a 
and X- is the X calculated from the equation 

X = 
-b-Vb1 

-4ac 

2a 

Table 5: Using the quadratic formula to solve for X 
Age X+ X- a b c 
40-49 0.036467 0.24668429 -4 1.132604 -0.03598 
50-59 0.036157 0.45377075 -4 1.959709 -0.06563 
60-69 0.034593 0.72446034 -4 3.036214 -0.10025 
70-79 0.032855 0.94414726 -4 3.90801 -0.12408 
80+ 0.021005 1.10067156 -4 4.486705 -0.09248 

In the end, the quadratic formula could be solved for two distinct values of X: X+ and X-. Only one value 
of X gave a logical answer, however. The solutions obtained from X+ gave answers between the values of 0 
and 1. The solutions obtained from X- gave answers between the values of 3 and 81, which are not possible 
probability values. Hence, using the X obtained from X+, we see that the probability of having symptoms 
given cancer are as follows: 

Table 6: Solving of P(SIC), Final Results: 
OR=1.5 OR=2 OR=2.5 
Age PfSIC) Age PCSIC) Age PCSIC) 

40-49 0.063839 40-49 0.125376 40-49 0.185548 
50-59 0.138616 50-59 0.250977 50-59 0.345106 
60-69 0.219203 60-69 0.367838 60-69 0.476356 
70-79 0.261645 70-79 0.422457 70-79 0.532188 

80+ 0.27725 80+ 0.438869 80+ 0.545197 
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Abstract: 

Context: Prostate cancer treatment remains controversial, but patients and their physicians may 
benefit from knowing treatment decisions of patients of similar age and clinical stage. However, 
treatment patterns have often been reported using the "most accurate" stage incorporating 
pathologic stage if available from surgery and no previous study has reported treatment rates by 
age and clinical stage. 

Objective: To examine prostate cancer treatment rates by age and clinical stage, and contrast 
these to rates by most accurate stage. 

Design: A retrospective analysis. 

Setting and Participants: All men diagnosed with prostate cancer in 1995 in the Surveillance, 
Epidemiology, and End Results cancer registry. 

Main Outcome Measures: Treatment rates by watchful waiting, radiation, surgery, or combined 
radiation and surgery. 

Results: Treatment rates by most accurate stage differ substantially from rates by clinical stage. 
For example, surgery rates for stages B, C, and D are 33%, 69%, and 7% by most accurate stage 
but 34%, 8%, and 1% by clinical stage. Treatment rates by clinical stage vary dramatically by 
age. Over 60% of men age 50-54 with clinical stage A and B choose surgery versus 21% age 70- 
74, and 1% after age 80. Radiation rates for clinical stage A and B rise with age up to age 70-74, 
before declining in older patients. About half of men with clinical stage C up to age 80 choose 
radiation, but almost 40% age 50-54 choose surgery. 

Conclusions: Treatment rates by most accurate stage differ significantly from rates by clinical 
stage. Patients and physicians should be aware of variations in treatment decisions by age and 
clinical stage. 

Word count: 250 



Introduction 

Prostate cancer is the most commonly detected form of cancer in American men. 

However, there is considerable debate concerning the proper treatment of prostate cancer. 

Because the disease often progresses slowly, many older men with prostate cancer are unlikely to 

die from it.3 Because treatments can often result in complications such as incontinence and 

impotence,7'8 the impact of treatment on quality of life may be considerable. 

In the absence of clear guidelines for the appropriate treatment of prostate cancer, 

patients and their physicians may benefit from knowledge of common treatment patterns. A 

number of studies have reported data concerning the rates at which different treatments for 

prostate cancer are used.9'10,11'12'13,14 Most of these studies simply report overall rates aggregated 

across all stages and ages.10'11'12'13'14 However, since treatment is generally tailored to patient age 

and tumor stage, these aggregate statistics may not provide much information for patients or their 

physicians concerning the choices of similarly situated patients. Moreover, these overall 

treatment rates may change over time based on changes in the distribution of tumors by stage and 

patient age, even in the absence of changes in treatment patterns conditional on age and stage. 

Moreover, even when analyses stratify tumors by stage, they rarely report treatment rates 

based on the clinical stage at the time that treatment decisions were made. For example, Mettlin 

et al.9 report rates stratified by stage, but are not able to determine whether the stage is based on 

the clinical stage or the pathologic stage determined following prostatectomy. Since pathologic 

staging of prostate cancer often results in a different stage than clinical staging,15 reports of 

cancer treatment based on the best available information combining clinical and pathologic stage 

("most accurate stage") do not represent how prostate cancer is actually being treated upon 

clinical presentation. For example, an increase in the number or fraction of clinical stage B 

cancers treated with surgery could appear as an increase in the number and fraction of stage C 



cancers treated with surgery if cancers are classified by most accurate stage and many stage B 

tumors are found to be stage C based on the results of prostatectomy. 

One study that does report treatment rates by clinical stage uses data from the American 

College of Surgeons and American Cancer Society National Cancer Data Base.16'17 However, 

that study does not report treatment rates by age and other studies using the NCDP have reported 

stage based on the most accurate information combining clinical and pathologic staging. '   ' 

Analyses by clinical stage have not been possible using population-based data because cancer 

registries and other sources of population-based cancer data have generally reported stage based 

on the most accurate information combining clinical and pathologic staging. The Surveillance, 

Epidemiology, and End Results (SEER) cancer-incidence database began to record clinical and 

pathologic stages separately in 1995, allowing for the analysis of treatment patterns by clinical 

stage. This study uses the 1995 SEER data to calculate treatment rates by age according to the 

true clinical stage, and contrasts these to estimates of treatment rates by age according to stage 

based on most accurate stage, as has generally been reported in the past. 

One study that does report treatment rates by age and clinical stage uses data from the 

American College of Surgeons and American Cancer Society National Cancer Data Base.19 

However, this study does not report treatment rates by age and other studies using the NCDP. 

Unfortunately, this is not a nationally population-based sample of cancer cases, and therefore 

may not be representative of treatment rates in the population.20 Such analyses by clinical stage 

have not been possible using population-based data either because cancer registries and other 

sources of population-based cancer data have generally reported stage based on the most 

accurate information combining clinical and pathologic staging, or because researchers have only 

reported stage based on a combination of clinical and pathologic stages.9'13,21 The Surveillance, 



Epidemiology, and End Results (SEER) cancer-incidence database began to record clinical and 

pathologic stages separately in 1995, allowing for the analysis of treatment patterns by clinical 

stage. This study uses the 1995 SEER data to calculate treatment rates by age according to the 

true clinical stage, and contrasts these to estimates of treatment rates by age according to stage 

based on most accurate stage, as has generally been reported in the past. 

Methods 

This study uses data from 1995 Surveillance, Epidemiology, and End Results (SEER) 

program (SEER Cancer Incidence Public-Use Database, 1973-1995, August 1997 Submission). 

This was the first year that SEER reported prostate carcinoma stage based on the pre- 

prostatectomy and post-prostatectomy stages. The SEER program has been collecting data on 

cancer incidence and prevalence since 1973 from cancer registries that now cover approximately 

14% of the U.S. population, and is believed to be reasonably representative of the U.S. 

population as whole (SEER web-site, www-seer.ims.nci.nih.gov). All men over the age of 50 

who had a diagnosis of prostate cancer in 1995 were included in the study. 

Using SEER*Stat software, we selected all cases of SEER-identified prostate cancer from 

1995. We defined the clinical stage of tumors as follows: Stage A included SEER identified 

tumors defined of A or Tl, stage B included tumors of B or T2, stage C included tumors defined 

as stage C or with local extension into an adjacent structure, and D included tumors with 

extensive local extension or distant metastases. In contrast, SEER also reports the "most 

accurate" stage of cancer according to any information available from prostatectomy. In these 

cases, any patient with localized disease without extension is classified automatically as stage B 



since SEER does not recognize pathologic stage A as a discrete entity. In addition, we classified 

patients with positive lymph nodes as pathologic stage D. 

We grouped treatment into four categories: watchful waiting, surgical treatment with 

prostatectomy, radiation therapy of any kind, or a combination of surgical treatment and 

radiation. In describing our results, we did not combine the men choosing combination therapy 

with those choosing surgery alone to calculate rates of surgery because the number choosing 

combination therapy is generally quite small and including those men would unnecessarily 

complicate the interpretation of our results. Since transurethral resection of the prostate (TURP) 

is a therapeutic treatment of symptoms rather than a curative treatment, we grouped those who 

had TURPs with those who did not have treatment. 

We calculated the age-specific treatment rates for each of the four stages based on two 

types of staging. The first calculations used the previously available method under which only 

the most accurate stage was known. The second calculations used the pre-prostatectomy clinical 

stage. 

Results 

The sample had a total of 15,954 men over age 50 with a diagnosis of prostate cancer. Of 

these, 79 were excluded because they had cystoprostatectomies, and hence their prostate cancer 

might have been found before a traditional clinical staging had been performed.   An additional 

1,692 were excluded because clinical stage was specified only as A or B and 1,694 were 

excluded because clinical stage was specified as unknown. 560 men were excluded for a variety 

of reasons such as missing pathologic data for patients who had undergone prostatectomy, 

missing information on lymph node status, or a variety of miscellaneous data inconsistencies. 



These excluded subjects did not differ substantially from included subjects in age, race, or 

pathologic stage in those with information available for comparison. Of the remaining 11,929 

men with prostate cancer and well-defined clinical stage, 4,252 (36%) were clinical stage A, 

6,103 (51%) were clinical stage B, 707 (6%) were clinical stage C, and 867 (7%) were clinical 

stage D (see figure 1). Breaking this group down by most accurate stage, 2,759 (23%) had stage 

A, 5,845 (49%) had stage B, 2,224 (19%) had stage C, and 1,097 (9%) had stage D. In addition, 

4 individuals who had a clinical diagnosis of prostate cancer were found to have a pathologic 

noninvasive or intraepithelial (in situ) tumor. 

Overall, 30% of those with prostate cancer are treated with surgery, 30% are treated with 

radiation, and 1% are treated with a combination of the two, while the remaining 39% receive 

expectant management, which may include hormonal therapy. 

Figure 1 reports treatment by the stage based on most accurate stage, as has often been 

done in the past, while figure 2 reports treatment rates based on clinical stage, with no recoding 

based on pathologic stage following prostatectomy. Combining patients across all ages and 

combining patients by stage according to the most accurate stage, no stage A patients receive 

prostatectomies (since SEER does not define a pathologic stage A), while 33% of stage B and 

69% of stage C patients receive prostatectomies. Analyzing the data by clinical stage, the 

fraction of patients receiving surgery for stages A and B is still slightly more than 30%, but is 

only 8% for clinical stage C and 1% of clinical stage D patients.   Rates of radiation therapy by 

most accurate stage decrease from 37% and 36% for stages A and B to 13% for stage C but rates 

by clinical stage rise from 24% for stage A and 34% for stage B to 43% for stage C. About 15% 

of stage D patients receive radiation by either staging system. 



Treatment rates vary substantially by age whether by most accurate stage (figure 3) or 

clinical stage (figure 4), with watchful waiting almost uniformly increasing by age, but 

especially after age 75. When using the most accurate stage, no men with stage A cancer have 

prostatectomies (by definition), but over 70% of the youngest men with stage B cancer, and 

about 80% for the youngest men with stage C cancer have prostatectomies. Using clinical stage, 

the rates of prostatectomy are about 67% for the youngest men with stage A and B cancer but 

decrease to 38% and 5% for the youngest men with stage C and stage D cancer. The 

overstatement of surgery rates using most accurate compared to clinical stage is even greater for 

men between age 55 and 74. Using most accurate stage substantially overstates the fraction of 

young men choosing radiation for stage A disease compared to the fraction by clinical stage and 

substantially understates the fraction of clinical stage C patients choosing radiation. Rates of 

combined surgery and radiation remain low at all ages using either staging system for all stages. 

Focusing on the treatment profiles by age for clinical stage, surgery is chosen by more 

than half to two-thirds of men age 64 and younger with stage A and B cancer, and almost half of 

those age 65-69, and then falls rapidly after age 70. Radiation therapy is chosen for clinical 

stage A and B disease by only about 10-15% of men age 50-54, but rises to be the choice of 30- 

50% of patients in their 70s before declining substantially for patients age 80 and above. Among 

men with clinical stage C cancer, the rate of surgery falls from a high of 38% of those 50-54 

years old to less than 1% of those over 80 years old. Other than the youngest group of men with 

clinical stage C disease, among whom radiation rates are decreased because of the fraction of 

men choosing surgery, the fraction of men choosing radiation drifts slowly down with age from 

59% in men age 55-59 to 40% in men age 75-79, before declining rapidly to 11% for those 

above age 80. Watchful waiting was the predominant form of treatment among clinical Ds, rising 



from 70% ofthose 50-54 years old to 89% of those over 80 years old. Radiation without surgery 

falls from 27% among those 55-59 years old to 11% of those over 80 years old. Surgery rates 

both with and without radiation are low in this group but appear substantially higher if assessed 

among D's classified by the best available information. 

Table 1 displays how clinical stages are restaged based on pathologic information. 

Because SEER does not recognize a pathologic stage A, all of those with clinical stage A cancer 

are reclassified after surgery. Nearly half of those with clinical stage B cancers and nearly a 

quarter of those with clinical stage C cancers are reclassified. Several men originally classified 

as having stage D cancer had their cancer stage downgraded after surgery. Among the 2,224 men 

with stage C cancer by most accurate stage, 1589 (71%) resulted from restaging following 

prostatectomy. 

Discussion 

This study reports how each clinical stage of prostate cancer was treated in 1995. This 

was made possible because SEER changed the method of recording prostate cancer grade such 

that the pre-prostatectomy and post-prostatectomy stages were both recorded. Our results 

indicate that surgery rates among patients with stage A prostate cancer are much higher than 

previously reported. In an analysis of treatments by most accurate stage, Mettlin et al.9 reported 

that fewer than 17% of patients with stage A disease received surgical treatment. In contrast, we 

found that over 30% of patients with clinical stage A disease received surgical treatment, with 

rates reaching almost 70% among the youngest men in the sample. Conversely, in the same 

study as above, Mettlin et al. found that over 52% of stage C cancer patients received surgery, 

while we found that only 8% of clinical stage C cancer patients received surgery. This 



discrepancy is explained by the large fraction of cases staged as C by most accurate stage occur 

because of restaging as the result of prostatectomy. 

Although Mettlin's 1993 analysis of the 1984 and 1990 American College of Surgeons 

data by clinical stage did not calculate stage-specific rates of treatment by age,16 our results 

across all ages are quite similar with the exception of a substantial increase in the rate of surgery 

among men with stage A prostate cancer from 6.5% in 1984 and 10.1% in 1990 to 33% in our 

data. Whether this represents a change in treatment patterns given stage or a shift towards the 

detection of localized prostate cancer in younger men who tend to elect more aggressive 

treatment, or other differences between the two populations cannot be determined without a 

reanalysis of the National Cancer Data Base Data. 

We found that patterns of radiation treatment differ from previous reports as well, but not 

as dramatically as with surgery rates. For example, our study found that approximately 24% of 

patients with clinical stage A cancer and 34% with clinical stage B cancer received radiation 

treatment. Again, in the analysis by most accurate stage, Mettlin et al.9 found that at least 34% 

of stage A and 36% of stage B patients receive radiation treatment, and in the analysis by clinical 

stage, Mettlin et al.16 found radiation therapy rates of about 16% for stage A and 40% for stage B 

in both periods. The higher rate of treatment of stage A tumors by radiation in the SEER data by 

most accurate stage that is reported by Mettlin likely represents the recoding of many clinical A 

or B patients to higher stages based on the results of surgery, so that the fraction of final As and 

Bs receiving radiation is increased. Along with the results described above for surgery rates 

among clinical stage A tumors, the increase in fraction of clinical stage A tumors treated with 

radiation seems to point again to an increase in the aggressiveness with which stage A prostate 

cancer is being treated. The absence of a strong gradient in radiation rates by age suggests that 



this increase is not due to a change in the age distribution of the patients found with stage A 

prostate cancer. This could be confirmed by reanalysis of the American College of Surgeons 

data used by Mettlin et al.16 that examined treatment rates by age. Among those with stage C or 

stage D cancer, where it is likely that radiation is used for palliative reasons, one also sees some 

increase in the use of radiation by clinical stage compared to the 1984 and 1990 data reported by 

Mettlin.16 

Putting aside these changes over time, our results confirm that substantial restaging of 

prostate cancer occurs after surgery. Upstaging of clinical stage A cancer after prostatectomy is 

required by definition, since the SEER staging system does not recognize pathologic stage A 

cancer. Such upgrading has led to the underestimation of prostatectomy rates among clinical 

stage A patients in studies based on most accurate stage. Conversely, because so many cancers 

are upstaged to pathologic stage C cancers after surgery, past estimates of surgery rates among 

Cs based on the "most accurate" information, which included pathologic instead of clinical 

information when available, overestimated the rate of prostatectomy among patients with a 

clinical stage C. 

Our results show the importance of calculating treatment rates based on both clinical 

stage and age. In contrast to prior studies that do not report rates by combinations of age and 

clinical stage, our results show surgery is by far the predominant method of treating stage A and 

stage B prostate cancer among younger men with prostate cancer. Among somewhat older 

patients with stage A or stage B prostate cancer, radiation is more frequently used. Given the 

known morbidities and uncertain benefits associated with treatment, it is not possible to say 

whether this is a desirable treatment pattern. Moreover, any treatment decision must also 

consider an individual patient's preferences and comorbidities. Nevertheless, knowledge of 



these common treatment patterns may nevertheless be useful for prostate cancer patients and 

their physicians. In addition, the finding that most young men choose surgery or radiation 

provides some insight into the challenges involved in enrolling patients into randomized clinical 

trials of treatment versus watchful waiting such as the currently funded National Cancer Institute 

Prostate Cancer Intervention Versus Observation Trial (PIVOT).22 

Our results are also striking for the fact that 20% of younger men with clinical stage C 

cancer are also treated surgically, despite the decreased likelihood that surgery will be of benefit 

in these men and the associated risks of complications.  With older data based on the "most 

accurate" information, some of this relationship could be explained as patients with clinically 

observed A or B disease who were then found to have stage C disease. Our findings suggest this 

is not the case and intensify the need to understand whether such surgery is justified. 

One challenge in identifying treatment patterns is that we were not able to identify 

through SEER whether the lymph node involvement was found during the clinical evaluation 

prior to surgery, or as part of pelvic lymph node dissection performed immediately before a 

prostatectomy that was consequently aborted. This implies that some patients who elect surgical 

treatment but have surgery aborted due to the intraoperative discovery of positive lymph nodes, 

may have their treatment misclassified. To assess this, we also performed a sensitivity analysis 

under the assumption that clinical A, B, or Cs with lymph node involvement had correct clinical 

staging information, but had been intended to have prostatectomy even if such surgery was not 

noted in the SEER data. Our findings indicate that surgery rates increased only slightly for 

clinical As and Bs since fewer than 2% were reassigned. Surgery rates increased more for those 

with clinical stage C cancer since 8% of the sample was reassigned. The surgery rate with or 

without radiation for men with clinical stage C cancer rises from 9% to 17%. 

10 



Our results also indicate the need for cancer databases to retain information on both 

clinical and pathologic states. In addition to describing these clinical and pathologic stages, our 

results also demonstrate the important of retaining information on the timing of diagnoses 

regarding lymph node involvement in prostate cancer. In the SEER database, it is unknown if 

the diagnosis was made during clinical staging, as might happen during a CT scan, or through 

lymphadectomy immediately prior to a planned prostatectomy which was consequently aborted. 

In our results, alternate assumptions regarding means by which lymph node status was 

determined required changes in the assignment of the intended treatment among those with stage 

D cancer. 

Knowing treatment rates for prostate cancer is important to understanding standard 

practice patterns for treating this disease. As more aggressive screening techniques detect 

prostate cancer at earlier stages, more men will be faced with the decision of how to treat their 

cancer. Current debates regarding appropriate treatment for prostate cancer have not been 

resolved. In the absence of such resolution, aggressive treatment among younger men with early 

clinical stages of the cancer is the norm. Reliable data on the patterns of treatment according to 

stage will be important as we attempt to determine how treatment patterns change in years ahead. 

11 



Table 1 Restaging of cancer after prostatectomy 

Stage A 
Clinical Stage B 
Stage    Stage C 

Stage D 
Total 

Stage A 
Clinical Stage B 
Stage    Stage C 

Stage D 
Total 

in-situ 
Pathologic Stage 

Stage B        Stage C        Stage D 
Lymph Node 
Involvement* 

1 838 605 0 40 
3 1,129 983 1 128 
0 8 51 0 64 
0 2 1 3 69 
4                1977             1640               4                  301 

Pathologic Stage                                  Lymph 
in-situ         Stage B        Stage C        Stage D     Involvement* 

0% 56% 41% 0% 3% 
0% 50% 44% 0% 6% 
0% 7% 41% 0% 52% 
0% 3% 1% 4% 92% 

1977 1640 305 1.52432 

Total 
1,484 
2,244 

123 
75 

3926 

Total 
1493 
2235 
123 
75 
3926 

*In this group, no pathologic stage or a pathologic stage other than D was recorded in the SEER 
data, but lymph node involvement was noted. Hence, it is likely that many people had a 
prostatectomy aborted subsequent to a positive lymph node dissection immediately before 
surgery. 
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Abstract: Uncertainty about the benefits and costs of medical interventions make sensitivity 
analysis essential in medical cost-effectiveness analysis. However, there has been insufficient 
discussion of the objectives for performing sensitivity analysis and, therefore, the standards by 
which to assess methods for sensitivity analysis. This paper attempts to identify the objectives 
for performing sensitivity analysis in cost-effectiveness analysis and uses an expected utility 
model to derive methods suited to reaching those objectives. The results indicate that if the 
objective is to maximize expected utility given available information and if financial risk is 
effectively diversified through either public or private insurance, then the optimal decision is 
determined by the ratio of the expected cost divided by the expected benefit. If the objective of 
sensitivity analysis is to guide decisions for subgroups that differ from a base case, then the ratio 
of expected costs to expected benefits for each subgroup is the appropriate criterion. If the 
objective of sensitivity analysis is to set priorities for the acquisition of additional information, 
the incremental increase in expected utility with additional information is the appropriate 
measure of benefit. Though such ideal value of information calculations may be difficult to 
perform, certain simpler approaches to sensitivity analysis may provide bounds on the value of 
information with less stringent data requirements. Together, these approaches suggest methods 
by which the vast literature applying cost-effectiveness analysis to medical interventions can be 
used to help set priorities for medical research. 
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Section 1: Introduction 

Despite some recent slowing in the growth of health care costs in the United States, 

health care costs have risen substantially over the past several decades and are likely to continue 

rising (Smith et al., 1998). This appears to be largely due to the growth of new technology 

(Fuchs, 1990; Newhouse, 1992). While improvements in health are highly valued (Cutler and 

Richardson, 1997; Murphy and Topel, 1998), there is evidence from diverse methodological 

perspectives that many new technologies may have little value at the margin (Eddy, 1981; Brook 

et al, 1983; McClellan, McNeil and Newhouse, 1994). Cost-effectiveness analysis and other 

approaches to formal medical technology assessment have arisen to attempt to address this 

important problem. 

One of the main challenges faced by medical cost-effectiveness analysis has been the 

question of how to perform these analyses in the presence of uncertainty about the benefits and 

costs of medical interventions. This uncertainty may result either from limited evidence from 

clinical trials or the need to extrapolate based on the results of clinical trials using decision 

analyses and their associated uncertainties in the structure and parameters of decision models. 

This uncertainty concerning the benefits and costs of medical interventions has resulted in the 

devotion of a great deal of effort to performing sensitivity analyses in cost-effectiveness 

analyses. 

However, though there have been many proposals about how to address uncertainty in 

cost-effectiveness analyses, there has been insufficient discussion of the objectives in performing 

sensitivity analysis. Without a clear understanding of these objectives, there is no compelling 

criterion by which to assess the merits of the many alternative approaches to sensitivity analysis. 



For this reason, the lack of clarity concerning the objectives for sensitivity analysis is an 

important reason for the continuing ambiguity concerning methods to account for uncertainty in 

medical cost-effectiveness analysis. 

This paper attempts to identify the objectives for sensitivity analysis within cost- 

effectiveness analysis and to develop methods suited to reaching those objectives. The primary 

objectives of sensitivity analysis are argued to be: (1) to help a decision maker to make the best 

decision in the presence of uncertainty, (2) to identify the sources of uncertainty to guide 

decisions for individuals or subgroups with characteristics that differ from a base case, and (3) to 

set priorities for the collection of additional information. This paper studies these problems by 

examining the implications of an expected utility maximization model for the optimal choice of 

medical interventions when there is uncertainty about the costs and benefits of those 

interventions. The results indicate that if the objective is to maximize expected utility given 

available information - as is implied, for example, by maximization of quality-adjusted life 

expectancy - and if financial risk is effectively diversified through either public or private 

insurance, then the optimal decision is determined by the ratio of the expected cost divided by 

the expected benefit. Other assumptions about preferences or insurance will yield other 

conclusions about how to account for uncertainty (Mullahy, 1997), but also would require 

different models for cost-effectiveness in the absence of uncertainty at the population level. 

These findings also have implications for sensitivity analyses done for other purposes. If the 

objective of sensitivity analysis is to guide decisions for subgroups that differ from the base case, 

then the ratio of expected costs to expected benefits for that subgroup is the appropriate criterion. 

If the objective of sensitivity analysis is to set priorities for the acquisition of additional 

information, the incremental increase in expected utility with additional information is the 



appropriate measure of benefit. Though such ideal value of information calculations may be 

difficult to perform, certain simpler approaches to sensitivity analysis may provide bounds on the 

value of information with less stringent data requirements. Together, these approaches suggest a 

theoretically grounded approach by which the tools of medical cost-effectiveness analysis can be 

used to help set priorities for medical research. Following these approaches, it may be possible 

to draw upon the vast literature on the cost-effectiveness of specific medical interventions 

(Elixhauser et al., 1998) to address crucial needs for more systematic ways to set priorities for 

medical research. After active discussion between Congress, the Administration, and the 

leadership of the National Institutes of Health over the value of and priorities for Federal funding 

of biomedical research, the need for such systematic approaches to identify priorities for research 

at the National Institutes of Health was recently highlighted in a report of the Institute of 

Medicine (Institute of Medicine, 1998). 

Section 2 discusses the objectives of sensitivity analysis. Section 3 discusses the primary 

methods currently used to perform sensitivity analysis. Sections 4 and 5 use an expected utility 

maximization model to derive methods for optimal decision making in the context of uncertainty 

about population outcomes. Section 6 uses this model to derive methods for sensitivity analysis 

to guide decisions for individuals or subgroups that differ from the base case. Section 7 applies 

these principles to a stylized decision concerning a medical treatment of uncertain benefit. 

Section 8 uses the model to derive methods for the use of sensitivity analyses to set priorities for 

the collection of additional information to guide decision making, including approaches to bound 

value of information calculations with limited information. Section 9 applies these ideas to a 

stylized model of the decision whether to treat prostate cancer and discusses some challenges in 

implementing these approaches to set priorities for research. Section 10 concludes. 



Section 2: Objectives for Sensitivity Analysis 

In order to begin to assess methods to account for uncertainty in population-level 

outcomes in cost-effectiveness analyses, it is essential to consider the objectives in performing 

sensitivity analyses. Although not all of these objectives may be relevant in every application, 

the objectives appear to fall into three broad categories: (1) to help a decision maker make the 

best decision in the presence of uncertainty about costs and effectiveness, (2) to identify the 

sources of uncertainty to guide decisions for individuals or groups with characteristics that differ 

from a base case, and (3) to set priorities for the collection of additional information. 

(1) Decision-Making under Uncertainty about Cost and Effectiveness 

This is probably the most common reason that sensitivity analysis is performed in 

medical cost-effectiveness analysis, and arises because the scientific literature often does not 

provide precise information concerning effectiveness or costs. For example, the efficacy of an 

immunization or the frequency and cost of complications may not be known with confidence. 

Nevertheless, patients may have to make decisions about whether they want the immunization 

and public and private insurers must decide whether they will cover it. Thus having a 

mechanism to help guide decision making when the costs and benefits of a medical intervention 

are uncertain is important. 

(2) Decision-Making for Individuals or Subgroups that Differ from a Base Case 

Though not frequently stated as a motivation for sensitivity analysis, developing insight 

into decisions faced by individuals or subgroups is also a common motivation for performing 



sensitivity analysis in medical cost-effectiveness analysis. For example, a cost-effectiveness 

analysis for immunization of a population would likely consider the average risk of acquiring an 

infection in the absence of immunization. However, an analyst examining the cost-effectiveness 

of immunization for an individual or group with a known risk factor for acquiring some infection 

would want to reflect that higher-than-average risk. 

(3) Priority-Setting for the Collection of Additional Information 

When the conclusions of a cost-effectiveness analysis are altered by parameter values that 

cannot be ruled out based on the literature, the collection of additional information concerning 

those parameters may be justified. Though in practice it is not frequently done, sensitivity 

analysis can be used to identify parameters that may change the results of a decision analysis and 

those parameters may then be studied more intensively. A few studies have used this approach 

to determine the value of sample size for clinical trials (Claxton and Posnett, 1996; Hornberger, 

1998), or to perform sensitivity analysis in a decision model by calculating the expected value of 

perfect information concerning specific parameters of the model (Felli and Hazen, 1998). 

Although these three motivations for performing sensitivity analysis are clearly distinct, 

papers in the literature commonly do not distinguish among them in their discussion of the 

sensitivity analysis. This is important because different methods for sensitivity analysis may be 

better suited to different objectives. This is discussed further below. 



Section 3: Methods for Sensitivity Analysis 

Before attempting to derive methods for performing sensitivity analysis, it is useful to 

discuss the existing methods. 

The oldest and most commonly used forms of sensitivity analyses are univariate 

sensitivity analyses. Following these approaches, analysts begin with the mean or modal values 

of all the probabilities in their analysis and use those to calculate the costs and benefits for a 

"base case" analysis. The parameters are then varied individually across a range of possible 

outcomes to see how the cost-effectiveness of an intervention changes. In some instances, the 

parameter values are varied over the range of all possible values, while in other cases they are 

varied across confidence intervals that are drawn from the medical literature. 

A major advantage of one-way sensitivity analyses is that they permit the analyst to 

identify the effects of individual parameters on the analysis. Another advantage of one-way 

sensitivity analyses is that the results can be easily calculated and reported. However, there are 

also a number of significant shortcomings of these approaches. First, the approaches do not 

clearly delineate either what range of parameter values to consider or what to do when some of 

those possible parameter values would change the optimal decision. For example, consider again 

the case of a vaccination. Its probability of providing immunity is logically constrained to a 

number between zero and one. High and low estimates in the literature might be 0.98 and 0.60. 

The best study might predict a protection rate of 0.92 with a 95 percent confidence interval of 

0.89 to 0.96. Which of these are we to choose in setting the range of parameters? If we choose 

the broadest range, it may be impossible to pin down the costs and benefits with sufficient 

precision to determine whether the intervention is worthwhile.   If we use a 95% confidence 



interval and find a benefit throughout the range, the potential for an immense harm that could 

occur if the true value of the parameter falls outside that range would fail to be recognized. Even 

if we find that the optimal decision changes for a parameter value at the upper end of the 95% 

confidence interval, it is not clear how that should change the decision we should make in the 

presence of uncertainty. If the welfare benefits over the majority of the interval are quite large, 

and any welfare loss at an extreme of the confidence interval is modest, it is not clear that the 

negative result at the extreme should have much influence on the decision made. Threshold 

analyses - which identify the parameter values at which an analysis crosses a cost-effectiveness 

threshold - are subject to the same criticism for failing to represent the magnitude of the effect of 

the parameter on costs and outcomes and therefore the significance of the fact that the cost- 

effectiveness ratio crosses some threshold for certain parameter values. 

Another concern with one-way sensitivity analyses is that they may be misleading if the 

results obtained by varying a parameter depend on the level of other parameters in the model. 

This has motivated multi-way sensitivity analyses in which parameters are varied simultaneously 

across plausible or likely ranges. These analyses are subject to all the concerns described above 

concerning one way sensitivity analyses, as well as some additional problems. One problem 

associated with these approaches is that the number of sensitivity analyses that must be 

performed rises exponentially with the number of parameters. Another problem is that the 

probability distributions of different parameter values will generally not be independent. For 

example, assumptions about the natural history of untreated disease may have implications for 

the history of disease under treatment. This has motivated efforts to examine the joint 

distribution of the parameters in a model. This approach, along with a similar population-based 

sampling approach to estimating costs, effectiveness and cost-effectiveness ratios, sometimes 



termed stochastic cost-effectiveness analysis, appears to be receiving increasing attention in the 

field (O'Brien et al, 1994; Gold et ah, 1996; Polsky et aL, 1997). However, these analyses still 

do not address the question of the optimal decision in the presence of uncertainty because they 

do not suggest what to do when the set of possible costs and outcomes include ones that would 

make the cost-effectiveness ratio fail to meet the chosen threshold for cost-effectiveness. 

Furthermore, there are a set of issues related to the calculation of cost-effectiveness 

ratios as ratios, and the relationship between those ratios and resource allocation. The ratio issue 

is important because benefits and costs will generally not be independently distributed since 

changes in parameter values will often influence both simultaneously and because ratios and 

their expectations are undefined when the benefits are, or may be, zero. Likewise, cost- 

effectiveness ratios may have very different meanings depending on the signs of cost and 

benefits so that merely calculating averages or even confidence intervals for cost-effectiveness 

ratios would not generally be meaningful (Stinnett and Paltiel, 1998). One creative approach to 

these issues is to reformulate cost-effectiveness analyses in terms of Net Health Benefits 

(Stinnett and Mullahy, 1997), in which both costs and benefits are expressed in the common 

denominator of years of life saved. While free of some of the complications associated with 

estimating cost-effectiveness ratios, the usefulness of the Net Health Benefit approach is 

diminished by the fact it does not allow easy comparisons with results from traditional cost- 

effectiveness analyses that rely on cost-effectiveness ratios, and is dependent on assumptions 

about the valuation of improvements in health. A related approach with similar concerns is to 

convert health benefits into a monetary value, as is done in cost-benefit analysis (Tambour, 

Zethraeus, and Johannesson, 1998). 



In assessing the methods described in this section, it is interesting to note that while all of 

them appear to have some significance for the objectives described in the preceding section, 

none of them are explicitly linked to that set of objectives. As discussed above, this lack of 

clarity concerning the objectives for sensitivity analysis is an important reason for the continuing 

ambiguity concerning methods to account for uncertainty in medical cost-effectiveness analysis. 

The next two sections use an expected utility maximization model to attempt to develop an 

approach to assess the importance of uncertainty about parameter values in order to make an 

optimal decision under uncertainty. The sections that follow then examine the adaptation ofthat 

approach to address the other two common objectives of sensitivity analysis - the determination 

of cost-effectiveness for individuals or subgroups and the identification of areas where the 

collection of additional information would be of value. 

Section 4: A Deterministic Model of Health Outcomes with Uncertainty about Effectiveness 

In this simple case, we assume that there is uncertainty about the effectiveness (6 e 0) of 

a medical intervention (m) but that the outcome of a medical intervention given 0 is certain. By 

making this assumption, we abstract from the problem of uncertainty in outcome for an 

individual, and focus instead on uncertainty for a "representative consumer". To capture the 

possibility that effectiveness may affect both the costs and benefits of an intervention, we allow 

both utility (U) and the costs of the medical intervention (c) to depend directly on 0. In addition, 

utility is assumed to depend on non-medical consumption (x) and medical expenditure. Thus, U 

= U(m, 0, x(0)) and c = c(m,0). Here x is written as x(G) to denote the fact that x will vary with 



0 for any m to satisfy the budget constraint c(m, 0) + x(0) -1 = 0 for each level of effectiveness. 

To model cost-effectiveness, we assume that people maximize expected utility1 and take the 

example of a representative consumer who maximizes expected utility subject to a budget 

constraint conditional on each level of effectiveness: 

Max j p(O)U(m,0,x(0))d0 such that c(m,0)+x(0)-I=O for all 0 (1) 
m 

This can then be rewritten as a LaGrange multiplier problem in which the X(ß) is the multiplier 

for the budget constraint for each level of 0, which are multiplied by p(0) without loss of 

generality to yield: 

Max \p(0)U(m,0,x(0))d0 + \X{0)p(0)[l-c{m,0)-x(0)]d0      (2) 
m,X(8) J 

This generates a first order condition for medical expenditure which is: 

|^«MÄ«+jw^»M«.0   (3) J dm J dm 

This condition implies that investment in a medical intervention should occur to the point at 

which its expected marginal benefit (utility) equals the expected value of the marginal-utility-of- 

income-weighted marginal cost. Permitting the marginal utility of income to be dependent on 0 

reflects the possibility that, either because of changes in the utility function or changes in costs 

due to 0, income might have a greater or lesser marginal utility. 

For an individual, these effects of uncertainty about the costs and effectiveness of 

medical interventions on the marginal utility of income are clearly plausible and potentially 

important. If someone has hip replacement for arthritis at age 55 and then suffers a severe 

complication, is forced into early retirement, and requires around-the-clock care, both their 

While individual preferences may in fact be inconsistent with expected utility maximization, QALYs implicitly 
assume that people maximize expected utility.   While the relaxation of this assumption might be desirable, doing so 

10 



Utility and medical costs will be directly affected and their marginal utility of income could 

change substantially. In a population, however, such effects are far less compelling because 

insurance can equate the marginal utility of income across health states unless an intervention 

leads to an extraordinarily large change in either population health or costs. Thinking from a 

population perspective in which most extremely expensive medical interventions affect a 

relatively small number of persons and most common medical interventions are relatively 

modest in cost, it is much less likely that the (aggregate) marginal utility of income will change 

substantially with uncertainty about the costs or benefits of a single intervention2. If this is the 

case, then limA.(0)-»A. and the first order condition for medical expenditures converges to: 

,        8U(mAA0)) de+ txm%t±& de = 0 (4) 
J dm J dm 

which implies that the cost-effectiveness ratio is: 

\md-^de   i 
(5) 

dm 

Thus expected utility maximization implies that the optimum cost-effectiveness ratio of an 

intervention in a population under uncertainty is closely approximated by the ratio of expected 

costs to expected benefits. Note that this "ratio of means" solution is analogous to that suggested 

by Stinnett and Paltiel (1997) as the solution to a constrained optimization problem in a linear 

programming context and by Claxton (1998) in a Bayesian discrete choice decision theoretic 

would therefore involve a substantial reformulation of the way in which health benefits are assessed even in the 
absence of uncertainty. This is discussed further in the conclusion of this paper. 
2 Note that even if changes in health status were to lead to substantial changes in income or the need for non-medical 
assistance holding income constant across individuals in different health states, optimal insurance could still equate 
the marginal utility of income across states. In practice, of course, insurance will generally fall short of this ideal, but 
this is nevertheless a useful point of reference. 

11 



context. However, neither analysis derives the result directly from a formal utility maximization 

model nor addresses the possible dependency of the marginal utility of income on 0. 

While this argument about the dependence of the marginal utility of income on 9 has not 

been made previously within the context of medical cost-effectiveness analysis, it should be 

noted that the argument is quite similar to that made by Arrow and Lind (1970) concerning the 

evaluation of risk in public investment decisions. In that article, the authors argue that the large 

scale on which the public sector exists allows it to effectively eliminate any welfare loss 

associated with the riskiness of investments by spreading the risk across a sufficiently large 

population. The argument here relies both on this diversification effect and the relatively modest 

magnitude of almost any one public health care decision in the context of overall health and 

health expenditures. 

Section 5: A Stochastic Population Model with Individual-level Uncertainty about Outcomes 

Unlike the deterministic model presented above, actual medical interventions almost 

always have uncertain outcomes for individuals even for any given set of population parameters. 

Thus if there is a set of individuals indexed by j e J who might each experience health outcome 

8j € E, the probability of experiencing outcome Sj given 9 e 0 can be written as /(SJ 19) and 

expected utility can be written as: 

J Piß) )\f(.G\&) Uj(m, G, Xj(ej, 0))dejdjd6 such that 

cj(m, G, 0) + XJ(Q, 6)-1 = 0 for all 6J, £j (6) 

12 



Following the lines of the argument above, we can construct state-specific LaGrange multipliers 

XJ(SJ, 9) and note that if there is (1) a large population so that aggregate risk given 0 is negligible, 

(2) full insurance, and (3) uncertainty in the effectiveness of the intervention has limited 

consequences in the sense that 0 does not have much effect on X as described above, then 

UmAj(.s,6) -> Z(s,6) -> X for all s s {si eh...£j} where s} eE and for all 6.    (7) 

This then implies again that cost-effectiveness can be identified by the ratio of expected costs to 

benefits. 

Section 6: Sensitivity Analysis to Guide Individual or Subgroup Decisions 

When sensitivity analysis is done to guide decisions for individuals or subgroups, the 

problem is essentially the same as for the total population, except that some of the parameters in 

the parameter vector 0 have a different probability distribution p'(0) than in the overall 

population. This may arise if parameters for those individuals or subgroups are known to differ 

from those for the population as a whole. It may also arise if prior probabilities concerning the 

distribution of parameters for sub-populations differ from what they are in the population as a 

whole. This could be the case either if the true parameters differ in the populations or if they are 

the same but some populations are more or less well studied than others. In either case, the 

analysis differs only in the probability distribution for the parameters. Accordingly, the solution 

to this problem for individuals or subgroups is again the ratio of the expected value of costs to 

the expected value of benefits, only using the appropriate prior probability distribution for the 

subgroup or individual. 

13 



Section 7: Application to a Stylized Decision Concerning a Treatment of Uncertain Benefit 

Figure 1 describes a stylized decision concerning an intervention of uncertain benefit. 

For simplicity, the intervention is assumed to cost $10,000 with certainty. Uncertainty is 

assumed to exist only with respect to benefits; it is assumed that there is a 90% chance that the 

benefit is 0.1 life-year, but also a 5% chance each that the benefit is 0.01 or 1 life year. 

Taking these three possibilities individually, the cost-effectiveness ratios are $100,000, 

$1,000,000, or $10,000 respectively. If one used a cutoff of $100,000 per life-year, a traditional 

sensitivity analysis would therefore be indeterminate. Such indeterminacy is, in fact, an 

extremely common result in cost-effectiveness analyses. Another limitation of this standard 

approach is that, while the cost-effectiveness ratios tell us something about the magnitude of the 

benefits relative to the cost, they do not provide any indication of how to relate the magnitude of 

those benefits to their likelihood. 

Common approaches to sensitivity analysis might take other perspectives. For example, 

the stochastic cost-effectiveness approach might conclude that since there is only a 5% chance 

that the intervention is not cost-effective, it should be selected. On the other hand, the same 

approach could be used to argue that since there is only a 5% chance that the intervention will 

provide a benefit in excess of its cost, it should not be selected. The problem with these 

perspectives is that they do not reflect the magnitude of potential benefits relative to costs. 

Following the expected utility approach described above, the expected cost is $10,000 

and the expected benefit is: 0.05*0.01 + 0.9*0.1 + 0.05*1.0 = 0.0005 + 0.09 + 0.05 = 0.1405 life- 

years. Thus the cost-effectiveness ratio is $10,000 / 0.1405 life-years = $71,174/life-year saved, 

which is clearly cost-effective by the $100,000 per life-year standard.  Even though the chance 
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that the intervention is highly beneficial is only 5%, more than one-third (0.05/0.1405=36%) of 

the expected benefit comes from the unlikely event that it is highly effective. It is this ability to 

incorporate both the magnitude and likelihood of benefits and costs into a single statistic that can 

be used to guide decision-making that is the primary advantage of the expected value approach 

over the traditional approaches that incorporate only one or the other dimension, and often result 

in indeterminate conclusions that do not provide much guidance for decision making. 

Section 8: Sensitivity Analysis to Guide Information Collection 

In addition to providing guidance about how to identify the optimal decision under 

uncertainty given available information, the expected utility approach can be used to set 

priorities for research by assessing whether the collection of additional information is likely to be 

worthwhile. When a study is done to accumulate improved information concerning parameters 

in a decision model, the value of information is the change in expected utility that comes from a 

change in uncertainty about the parameters. Although this fundamental principle dates back at 

least to the pioneers of statistical decision theory (e.g. Raiffa and Schlaifer, 1961; Pratt, Raiffa, 

and Schlaifer, 1965), it has not been commonly used in developing techniques for sensitivity 

analysis in medical decision analysis. Indeed, when formal techniques for clinical trial design 

have been implemented (e.g. O'Brien et a]., 1994; Al, van Hout et al., 1998; Briggs and Gray, 

1998), they have often been based on criteria for decision making such as confidence intervals 

around the cost-effectiveness ratio, which generate suboptimal results for the same reasons as the 

problems with threshold approaches to sensitivity analysis that are described above. Two 

exceptions to this are Claxton and Posnett (1996) and Hornberger (1998), which focus on the 
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determination of optimal sample size for a clinical trial from a cost-effectiveness perceptive in a 

full bayesian context. 

Adopting the expected utility approach, assume that for any information set describing 

the parameter distribution, p(0), there is an optimal choice of m as described above. Call this 

m*(p(9)). This implies an expected utility with existing information (EU0) of: 

jp(0)U(m*(p(0)),0,x(0))d0 (8) 

Now imagine that we are able to acquire additional information about 0. Assume further that the 

cost of this research is Cr. Though the analysis is easily generalized to permit an infinite number 

of possible outcomes of the experiment3, assume for simplicity that there are only two possible 

outcomes of this experiment: with probability q that the distribution of 9 is found to be p'(9) and 

with probability (1-q) that it is found to be p"(9), where, for consistency with the initial prior 

distribution, q*p'(9) +(l-q)* p"(9) = p(6)- In these cases, the optimal level of medical 

expenditure will be m*(p'(9)) and m*(p"(9)) and the expected level of utility is: 

q\p' (0)U(m*(p' (0)),0,x*' (0))d0 + (\-q)jp" (0)U(m*{p" (0)),0,x*" (0))d0       (9) 

where x*'(9) and x*"(9) are determined from the budget constraint net of research costs cr (i.e. 

In the general case, we wish to compare the expected utility resulting from the optimal decision m* given the 
original budget constraint in the absence of information to the expected utility resulting from the optimal decision in 
the presence of the new information subject to a budget constraint that includes the cost of collecting information 
(Cr). Thus we compare the expected utility resulting from the solution to: 

MaX j P(&) U(m> &> x{0))d0 + jl(0) p{0) [c(m, 0) + x(0)-1] d0 to the expected utility of the 

solutions to the optimal decision problems for the j possible outcomes of the experiment as individually given by 

Max jPj(0)U(m,0,x(0))d0 + JÄ(0)Pj(0)[c(m,0)+x(0) + cr-l]d0 where \pj(0)p{j)dj =p(0). 
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c(m, 0) + x(9) + cr - I = 0 for all 0) .   It follows that the change in expected utility with the 

collection of information, or expected value of information (EVI) is: 

gjp'(0)U(m*(p'(ß)),0,x(0))dö+(l-q)jp,,(O)U(m*(p"(0)),e,x(0))dO-EUo    (10) 

If this is positive then the study is worth performing, if not, then it should not be performed. 

Although this value of information calculation is easily described in theoretical terms, the 

ability to implement this approach depends on the ability to assemble meaningful information on 

the prior probabilities of the parameters required for the calculation, and these may be very 

difficult to obtain. In some instances, these may be estimated based on published studies that 

report means and confidence intervals that may then be used to describe the full distribution of 

parameter values. In other instances, primary data collection may be required. Still, it is likely 

that in a significant number of cases it will not be possible to identify much information that will 

inform priors. Moreover, it may be quite difficult to say much about how an experiment is likely 

to affect the posterior distributions of the parameters. 

These empirical challenges suggest that techniques for assessing the value of information 

that do not rely on this data concerning prior or posterior distributions would be highly useful. In 

the case where information on priors is available, one such possibility is the expected value of 

perfect information: EVPI = Jp(0)U(m*(0))d0 - EU0, where m*(0) is the optimal choice of m 

if 0 is known.   Since the expected value of information is always positive4, this provides an 

4 To see this, not that if research cost are zero, the fact that m*(p'(8)) and m*(p"(6)) are optima implies that the first 
two terms in this equation are greater than: 

q\p' (0)U(m*(p(0)),0,x(0))d0 + (l-q)\P"(0)U(m*(p(0)),0,x(0))d0 
J r 

J (ID 
= \p(0)U(m*(p(0)),0,x(0))d0, 

which is the expected utility from the optimal expenditure level in the absence of information. This implies that the 
expected value of free information is greater than zero. For completeness, it should be noted that this result applies 
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upper bound on the ideal value of information calculations described above. From a practical 

point, however, the advantage of the EVPI calculation is that it does not depend on the 

posteriors. Indeed, this is probably one reason why the EVPI approach has been used in the cost- 

effectiveness literature (e.g. Felli and Hazen, 1998)5. 

Although EVPI is simpler to determine than EVI, it still depends on knowledge of the 

priors. An alternative measure that did not depend on this might also be useful. One such 

measure is the maximal value of information (MVI) over all possible values of 9 e 0, 

MVB = MaxU(m*(0)).    Although this will also only be an upper bound on EVPI and, 

therefore, EVI, it depends only on knowledge of the value function conditional on 0. Despite the 

fact that it may be a relatively crude upper bound, it is worthwhile to note that this criterion in 

fact corresponds to that implied by a threshold analysis in which the bounds are determined by 

the extreme values of the parameter (assuming, as is usually done, that the value function is 

monotonic with respect to the parameters). Thus, application of the threshold technique based on 

the full range of possible values of a parameter can be considered a bound on the more general 

value of information calculation, only with less rigorous information requirements. Thus, like 

only to public information. When information is private, there is no guarantee that its expected value will be positive 
(e.g. Rothschild and Stiglitz (1976)). 

It should be noted, however, that Felli and Hazen (1998) consider the expected value of perfect information 
relative to the expectd value of an optimal decision that they specify as one that maximizes the expected payoff 
given parameter values that the investigator feels are "most likely to obtain" (p. 100). This seems to suggest the 
modal value(s) of the parameter(s). Nevertheless, in their applications they tend to choose the mean values of their 
parameters. Regardless, since neither of these are generally the optimal decision given available information, this 
calculation will overstate the actual expected value of perfect information relative to an optimal decision given 
imperfect information. In this sense, the calculation by Hazen and Felli can be viewed as an upper bound on the true 
EVPI. The only advantage of this approach over the theoretically correct approach is that it avoids the need to 
determine the decision that maximizes the expected value with existing information. This is not a substantial 
advantage, however, because, if the value of information is small, then collecting additional information is 
presumably not worthwhile and therefore knowing the optimal decision with existing information is key. Similarly, 
if the value of information is large, then one still wants to try to determine the EVPI relative to an optimal decision 
with existing information in order to see how much that decreases the bound on the EVPI. Thus, in either case, the 
calculation of EVPI relative to the optimal decision given current information is preferred. It is also generally not an 
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EVPI, the threshold technique based on the full range of possible values a parameter might take 

can be considered a method for placing an upper bound on the more complex EVI calculation. 

When these calculations suggest the MVI or EVPI is low, the full EVI calculation is not 

necessary. Note, in contrast, that the common practices of assessing cost-effectiveness at a 95% 

confidence interval for a parameter or calculating stochastic cost-effectiveness intervals have no 

clear theoretical justification. 

Thinking more broadly, if 0 is enlarged to include any possible conceivable value of 0, 

even if those values are excluded under current technology, this type of reasoning can be 

extended to consider any possible research on the parameter in question. For example, if the 

probability of cure with the best current treatment for a disease is known to be between 20 and 

40 percent with certainty and the treatment is found not to be worthwhile (perhaps because of 

morbidity), one could calculate whether treatment would be worthwhile if the cure rate were 100 

percent. This might be called the maximum value of research (MVR), and, in turn, can be used to 

generate an upper bound on MVI that does not require any data at all concerning the parameter 

in question. The MVR concept could also be expanded to consider innovations that led to 

fundamental changes in the structure of the decision tree, and not just the effects of changes in its 

parameters. 

Section 9: Application to a Stylized Model of the Decision whether to Treat Prostate Cancer 

In order to illustrate the approaches described above, this section examines a simplified 

model of the decision to treat prostate cancer. A highly stylized model is chosen in order to 

extremely difficult determination to make once the ability to assess the expected value of outcomes from an arbitrary 
(optimal or suboptimal) decision is present. 
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focus attention on the methods described rather than the specific application. In this simplified 

model (Figure 2), the decision to treat prostate cancer is viewed as a decision between radical 

prostatectomy (surgical removal of the prostate) and "watchful waiting" (no intervention unless 

the disease is found to spread). This decision is represented by the two decision nodes in the 

middle of the decision tree in Figure 2. In this simplified model, radical prostatectomy is 

assumed to be curative, so that the patient lives out a normal life expectancy of 25 years. Radical 

prostatectomy is major surgery, however, and carries the risk of immediate death, which is 

assumed to occur 5% of the time. The outcome of watchful waiting will depend on how quickly 

the prostate cancer progresses. Many cancers will progress slowly enough that men die of other 

causes before they die of prostate cancer and thus live a "normal" life expectancy (assumed here 

to be 25 years). Other men will progress rapidly and die of prostate cancer (assumed here to 

occur at 10 years). For simplicity, we assume that quality of life is not a concern in prostate 

cancer treatment so that outcomes are measured in life years, which are the same as quality- 

adjusted life years. Radical prostatectomy is assumed to cost $10,000 and the basic future costs 

of survival are assumed to be $20,000 per year. (See Meltzer (1997) for a justification for 

including costs of this nature). 

However, the natural history of prostate cancer is not as well understood as suggested by 

these assumptions. In fact there is a great deal of uncertainty even about average rates of 

progression to death from prostate cancer - i.e. how aggressive the disease is on average. This is 

the dimension of uncertainty on which we focus in this example. This is captured in a stylized 

way in Figure 2 by the upper and lower decision trees that differ in the fraction of tumors that 

will progress rapidly (0.085 in the "non-aggressive" case, and 0.2 in the "aggressive" case). 
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Though of course some other fraction in between or near these two might be imagined to be 

correct, we assume for simplicity here that one or the other of these values is precisely correct. 

Panels 1 and 2 of Table 1 show the results of a cost-effectiveness analysis of the 

treatment decision in the non-aggressive and aggressive cases. In both cases, treatment provides 

a benefit, but in the first case it is a small benefit with a cost per QALY of $420,000 and in the 

second case it is a much larger benefit with a cost per QALY of only $26,000. If we assume for 

simplicity that the cutoff for cost-effectiveness is $100,000 per QALY, then the optimal decision 

in the first case would be watchful waiting, while in the second case it would be treatment. 

The left most part of the decision tree reflects the fact that we do not know which of these 

two possibilities might be the case and places some prior probabilities on the two arms (0.2 

aggressive, 0.8 non-aggressive). Panel 3 of Table 1 reports the expected benefits and costs of the 

screening decision when these priors are held. In that case, the ratio of the expected costs to 

expected benefits is $47,000, which would be cost-effective by the $100,000/QALY standard. 

This might be considered surprising because the assumption was that there was an 80 percent 

chance that the progression was not aggressive, and treatment is not even close to being cost- 

effective by the $100,000/QALY standard in that case. The result is driven by the 20 percent 

chance that the benefit could be much larger, despite the fact that that possibility is not very 

likely. This points out the potential for the ratio of the expected value approach to generate 

different results than approaches that do not account for both the magnitude and likelihood of the 

potential benefits. 

We now turn to the question of whether the collection of additional information would be 

of value. Following the approach described above, we begin with calculation of the maximum 

value of information.   This calculation can be done in a variety of ways requiring progressively 
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more information. To take an extreme example, assume that we knew nothing about the 

probability that prostate cancer is aggressive, but only the life expectancy of patients with 

aggressive cancers who are treated or not treated, and the price of prostatectomy. In the absence 

of knowledge about the probability that cancers would progress rapidly, there is no clear 

guidance about whether watchful waiting or prostatectomy dominates, so we therefore consider 

both cases as reference cases. Assume first that we decide that no treatment will be the reference 

point. To get an upper bound on the value of information, one could use only information on the 

life expectancy of treated and untreated patients and assume that all patients have aggressive 

cancers. Specifically, assuming that all men who have prostate cancer but are not treated live 10 

years (QALYs), while those who are treated live 25 years (QALYs), the value of treatment per 

patient would be 15 QALYs*$100,000/QALY = $1.5 Million per patient. Alternatively, we 

could assume that that treatment would be the reference case, in which case the benefit of finding 

out that treatment was not cost-effective would be the cost savings from avoiding prostatectomy 

($10,000/patient) and avoidance of treatment-related mortality (0.05 mortality*25 years 

maximum life expectancy*$100,000/QALY = $125,000/patient), which add to $135,000 per 

patient. 

If one were then to use this knowledge of the maximum value of information for a patient 

to make a decision about whether investment in a study to resolve the ambiguity about the 

aggressiveness of prostate cancer would be worthwhile, one might multiply these numbers by the 

number of men who are found to have prostate cancer annually (100,000) and divide by some 

real interest rate (0.03) to reflect the discounted value of the value ofthat information over time 

to get the maximum value of information (MVI): $1.5 Million* 100,000/0.03 = $5 Trillion if the 

baseline strategy is watchful waiting and $0.135 Million* 100,000/0.03 = $450 Billion if the 
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baseline strategy is prostatectomy. These extremely large estimates of the maximum value of 

information suggest that there is the potential for information of immense value to come from 

knowledge about the efficacy of prostate cancer treatment. This value of information is large 

relative to the cost of any conceivable clinical trial. 

Of course these maximum value of information calculations represent an upper bound, 

and a fair interpretation of these findings is that the MVI approach is simply not informative in 

this case, despite its analytical simplicity and independence of assumptions about the 

probabilities that cancers are aggressive. This suggests that it is worthwhile to pursue the 

expected value of perfect information (EVPI) approach. 

The EVPI approach is described in panel 4 of the table. The panel describes the expected 

value of three strategies: watchful waiting, radical prostatectomy, and the optimal decision with 

perfect knowledge of the actual average progression rate (EVPI). The last two columns calculate 

the value of the change in QALYs (assuming $100,000 per QALY for illustration) and the net 

incremental benefit of the policy choice compared to the strategy immediately above it in the 

table. 

The first point to note is that if one made policy based on the most likely cost 

effectiveness ratio ($420,000), one would choose watchful waiting, but if one chose based on the 

ratio of the expected values, one would choose radical prostatectomy, which yields a net benefit 

of ($26,000-$6,400=) $19,600 per patient relative to watchful waiting. This is a quantified 

measure of the expected gain from the improvement in decision making by using the mean of the 

expected values as opposed to basing the decision on the most likely cost-effectiveness ratio, as 

is generally done in the "base case" reported by most current cost-effectiveness analyses. 
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The second point to note is that the expected value of the gain versus watchful waiting 

with improved information is even higher at $26,000 per patient. This implies an additional gain 

of $6,400 per patient of the improved information compared to the best possible decision with 

the initial information. Converting this patient level estimate of the value of research into a 

population level estimate as above suggests an EVPI of $6,400*100,000/0.03 = $21 billion. As 

with the MVPI, this large EVPI suggests that the expected value of perfect information about the 

efficacy of prostate cancer treatment would indeed be quite large relative to the cost of almost 

any conceivable clinical trial. 

Of course this too is an upper bound on the expected value of information that would 

come from any actual clinical trial, since any clinical trial is likely to provide less than perfect 

information. Panel 5 examines one such case in which an experiment is done that has two 

possible outcomes: a 50 percent probability of an outcome that suggests that the probability that 

prostate cancer is aggressive is 0.05 and a 50 percent probability of an outcome that suggests that 

prostate cancer is aggressive is 0.35. (Note this preserves the prior that the probability that 

prostate cancer is aggressive is 0.2 since 0.5*0.05+0.5*0.35 = 0.2.) The expected value of 

outcomes from watchful waiting and radical prostatectomy given these two possible outcomes of 

the experiment are reported in the upper and lower parts of panel 5. In the first case, the optimal 

decision switches to watchful waiting as compared to prostatectomy with the initial information, 

which yields a net surplus of $600 per patient. In the second case, prostatectomy remains the 

optimal choice, so there is no additional benefit to having done the study. Thus the expected net 

benefit is 0.5*$600 = $300 per patient. A decision about the study might be made by comparing 

its cost to the expected value of the information (EVI): $300*100,000/0.03 = $1 billion. 
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Therefore, the value of this study would be quite large, although substantially less than the upper 

bound suggested by the EVPI. 

In a similar manner, possible experiments concerning all other dimensions of the model 

might be examined to determine whether they would be worthwhile. In this way, it might be 

determined how much could be gained by improved sensitivity and specificity of screening tests, 

decreased complications of treatment, improved risk stratification prior to treatment, and so on. 

Clearly, there has been no attempt in this example to suggest that a comprehensive 

attempt to perform a precise calculation of the type described would generate results anything 

resembling these in magnitude. However, these simplified calculations do illustrate the types of 

calculations that might be performed to assess the value of research, including more simple 

calculations such as the EVPI that require less information. 
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Section 10: Conclusion 

This paper has examined the purposes for which sensitivity analysis is performed in 

medical cost-effectiveness analysis and the implications of an expected utility maximization 

model for the methods to perform such analyses. When sensitivity analysis is done to help guide 

decision making in the presence of uncertainty, expected utility maximization implies that the 

optimal decision is described by the ratio of the mean cost divided by the mean benefit. When 

sensitivity analysis is done to make decisions for subgroups with identifiable differences in costs 

or benefits, the standard is the same, only using the appropriate mean costs and mean benefits for 

each group. When sensitivity analysis is done to set priorities for the collection of additional 

information, the expected utility maximization framework suggests that value of information 

calculations can be done in the same context to assess the expected value of information (EVI) 

obtained by research. Though the data requirements for such calculations are substantial, the 

expected value of perfect information (EVPI) and maximal value of information (MVI) can be 

used to bound EVI with less stringent data requirements. 

At a theoretical level, there are a number of limitations of this work. First, even with 

complete certainty about costs and benefits, cost-effectiveness analysis may not maximize the 

welfare of individuals or society. Reasons for this include differences between individual and 

social perspectives that complicate the measurement of costs and benefits (Meltzer and 

Johannesson, 1998), failure to measure benefits in a way that reflects the preferences of patients 

(Meltzer et al., 1998), and fundamental issues concerning the potential to derive any consistent 

social preference ordering that is based on the preferences of individuals (Arrow, 1951). Also, 

there are important issues about how risk at the individual level may affect welfare (Kahneman 
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and Tversky, 1979) that are essentially ignored by the assumptions that perfect insurance is 

available and that people maximize expected utility. Even though the expected utility 

maximization assumption is implicit in QALYs, it may not well reflect the way in which people 

incorporate uncertainty into their preferences (Kahneman and Tversky (1979)). However, while 

this is clearly an important limitation of QALYs, it is one that needs to be addressed regardless 

of the issues about aggregate uncertainty that are addressed in sensitivity analysis. As discussed 

above, concerns about aggregate financial and health risk do seem somewhat less compelling in 

a social context where the risks associated with decisions about individual technologies are likely 

to be modest from an aggregate perspective. Nevertheless, the issue of how risk should be 

assessed in policy decisions is important and deserves further consideration because other 

assumptions about preferences concerning risk or about insurance would lead to different 

conclusions about a range of methodological issues in cost-effectiveness analysis, including 

sensitivity analysis (e.g. Mullahy, 1997). 

Rather than using either expected utility or some other framework to incorporate 

preferences concerning outcomes and risk, it might be argued that it would be preferable to 

simply describe the joint distribution of benefits and costs. Nothing about this analysis suggests 

that should not be presented. Indeed, it is the primary data with which expected value 

calculations are performed. However, using such information to make choices would still 

require decisions about how to incorporate risk into decision making. Unlike traditional 

approaches to sensitivity analysis, the expected value approach provides direct guidance in the 

common case in which the optimal decision varies with the assumptions that are made. 

At an empirical level, there are important challenges in developing meaningful priors 

concerning the parameters of decision models (e.g., probabilities, quality of life values, discount 
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rates, etc.). As discussed above, this may often require extensive review of existing data, 

primary data collection, or even sometimes analyses based on a variety of arbitrary priors. It 

may also be very difficult to determine priors for the likelihood that a research project will find a 

meaningful result. Whether it is possible to adequately address these challenges will be resolved 

only through efforts to apply these ideas empirically. 

In thinking about using these approaches to assess the value of research, there are also a 

variety of additional challenges. These include the interdependence of the benefits of research 

projects on related topics, the possibility that the research might become less (or more) valuable 

over time if other technological or demographic changes arise that alter the management, 

frequency or natural history of the disease, and the unpredictability of how the results of research 

(particularly basic research) might be useful in areas outside the initial areas of inquiry. The 

difficulty of these issues implies that the sort of formal analyses suggested here are more likely 

to be of use for evaluating clinical research than for evaluating basic research. 

Despite the theoretical and empirical issues raised by this work, the importance of 

making good decisions about the allocation of resources to medical interventions and medical 

research suggest that work in this area be an important priority. In considering whether formal 

approaches based on the tools of cost-effectiveness analysis are likely to have much influence on 

priority setting, it is encouraging that the recent report of the Institute of Medicine on improving 

priority setting at the NIH recommended that: "In setting priorities, NTH should strengthen its 

analysis and use of health data, such as burdens and costs of diseases, and on data on the impact 

of research on the health of the public, (p. 11)" (Institute of Medicine, 1998). 

On the other hand, the limited number of cases where cost-effectiveness analysis has 

been highly influential in medical resource allocation decisions and the likely resistance of the 
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medical research community to having research proposals evaluated by formal criteria suggest 

that formal techniques to set priorities for research will have to prove their value. It is possible 

that cost-effectiveness analysis may enhance its influence if it can address key methodological 

challenges in the measurement of benefits and costs, and techniques for sensitivity analysis. It is 

also possible that resistance to the use of cost-effectiveness analysis in decisions relating to 

policy, such as allocation of research funds, may be less than the resistance to its use in decisions 

concerning the allocation of medical treatments. Nevertheless, the use of formal techniques to 

help set priorities for research seems more likely to gain acceptance through instances where 

neglected areas of research can be identified as important through formal analysis than through 

instances where research is suggested to be of little value. Consistent with this, it appears that 

threats to planned increases in the NIH budget due to questions from some members of Congress 

about the value of increases in appropriations for research and concerns about NIH priorities in 

allocating research funds were an important motivation for the Institute of Medicine report that 

encouraged efforts to use formal approaches to determine the value of research. 
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Table 1: Value of Information for Cost-Effectiveness of Screening for Prostate Cancer 

Panel 1: Prostate Cancer Known Non-Aggressive: Fraction rapidly progressing = 0.085 

AC/AQALY Value AQALY Netlncrem. 
Strategy                              Cost(K$)   ACost(K$)     QALY      AQALY    (KS/QALY) (K$)* Benefit (K$) 
Watchful Waiting                     475                .             23.725            .                   . . . 
Radical Prostatectomy              485               11             23.75          0.025             420 2.5 -8.5 

Panel 2: Prostate Cancer Known Aggressive: Fraction rapidly progressing = 0.2 

AC/AQALY Value AQALY Netlncrem. 
Strategy                              Cost(K$)   ACost(K$)     QALY      AQALY    (KS/QALY) (K$)* Benefit (K$) 
Watchful Waiting                   440                .                22                                   . . 
Radical Prostatectomy            485              45             23.75           1.75               26 175 130 

Panel 3: Aggressiveness of Prostate Cancer not Known: Prob. Aggressive (as in Panel 2) =.2 

AC/AQALY Value AQALY Net Increm. 
Strategy                              Cost(K$)   ACost(K$)     QALY      AQALY    (KS/QALY) (K$)* Benefit (K$) 
Watchful Waiting                 467.6              .              23.38             .... 
Radical Prostatectomy            485             17.4           23.75          0.37              47 37 19.6 

Panel 4: Expected Value with Perfect Information: Prob. Aggressive (as in Panel 2) = 0.2 

AC/AQALY Value AQALY Netlncrem. 
Strategy                              Cost(KS)   ACost(KS)     QALY      AQALY    (KS/QALY) (K$)* Benefit (K$) 
Watchful Waiting                  467.6                               23.38              .                    . . . 
Optimal w/Perfect Info.        476.6              9              23.73          0.35               26 35 26 
Radical Prostatectomy            485               8.4             23.75           0.02              420 2 -6.4 

Panel 5: Expected Value w/ Improved Info.: 50% chance study => Prob. Agg.=0.05; 50% chance study => Prob. Agg. =0.35 

AC/AQALY Value AQALY Netlncrem. 
Strategy                              Cost(KS)   ACost(KS)     QALY      AQALY    (KS/QALY) (K$)* Benefit (K$) 
Prob. Aggressive=0.05 

Watchful Waiting 473.3 23.64 
Radical Prostatectomy            485             11.7           23.75          0.11              106 11.1 -0.6 

Prob. Aggressive=0.35 
Watchful Waiting                  462.8                               23.12              .                    . . . 
Radical Prostatectomy            485              22.2            23.75           0.63               35 62.9 40.6 

Expected Value of Info. (vs. expected value of optimal decision with initial info. (Prostatectomy)) = 0.5*0.6 = 0.3 

* 1QALY=$100K 



Figure 1: Simplified Decision Concerning a Treatment of Uncertain Benefit 
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Figure 2: Simplified Cost-Effectiveness Model for Screening for Prostate Cancer with 

Uncertainty about Progression Rates 
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